Reducing residential energy consumption through a marketized behavioral intervention: The approach of Household Energy Saving Option (HESO)

2021 ◽  
Vol 232 ◽  
pp. 110621
Author(s):  
Qian Xu ◽  
Yujie Lu ◽  
Bon-Gang Hwang ◽  
Harn Wei Kua
2013 ◽  
Vol 448-453 ◽  
pp. 1269-1272
Author(s):  
Zhao Chen ◽  
Li Bai ◽  
Feng Li

In this paper, the software of DeST was used to simulate the heating energy consumption by the year of a typical energy-saving residential building in the city of Changchun. Comparing the energy consumption of the top and bottom,the middle room and the edges rooms ,we get the reasons for the uneven heating and put forward the corresponding solutions, which provide the reference for heating system design.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7523
Author(s):  
Minseok Jang ◽  
Hyun Cheol Jeong ◽  
Taegon Kim ◽  
Dong Hee Suh ◽  
Sung-Kwan Joo

Since January 2020, the COVID-19 pandemic has been impacting various aspects of people’s daily lives and the economy. The first case of COVID-19 in South Korea was identified on 20 January 2020. The Korean government implemented the first social distancing measures in the first week of March 2020. As a result, energy consumption in the industrial, commercial and educational sectors decreased. On the other hand, residential energy consumption increased as telecommuting work and remote online classes were encouraged. However, the impact of social distancing on residential energy consumption in Korea has not been systematically analyzed. This study attempts to analyze the impact of social distancing implemented as a result of COVID-19 on residential energy consumption with time-varying reproduction numbers of COVID-19. A two-way fixed effect model and demographic characteristics are used to account for the heterogeneity. The changes in household energy consumption by load shape group are also analyzed with the household energy consumption model. There some are key results of COVID-19 impact on household energy consumption. Based on the hourly smart meter data, an average increase of 0.3% in the hourly average energy consumption is caused by a unit increase in the time-varying reproduction number of COVID-19. For each income, mid-income groups show less impact on energy consumption compared to both low-income and high-income groups. In each family member, as the number of family members increases, the change in electricity consumption affected by social distancing tends to decrease. For area groups, large area consumers increase household energy consumption more than other area groups. Lastly, The COVID-19 impact on each load shape is influenced by their energy consumption patterns.


2021 ◽  
Vol 29 (2) ◽  
pp. 166-193
Author(s):  
Roya Gholami ◽  
Rohit Nishant ◽  
Ali Emrouznejad

Smart meters that allow information to flow between users and utility service providers are expected to foster intelligent energy consumption. Previous studies focusing on demand-side management have been predominantly restricted to factors that utilities can manage and manipulate, but have ignored factors specific to residential characteristics. They also often presume that households consume similar amounts of energy and electricity. To fill these gaps in literature, the authors investigate two research questions: (RQ1) Does a data mining approach outperform traditional statistical approaches for modelling residential energy consumption? (RQ2) What factors influence household energy consumption? They identify household clusters to explore the underlying factors central to understanding electricity consumption behavior. Different clusters carry specific contextual nuances needed for fully understanding consumption behavior. The findings indicate electricity can be distributed according to the needs of six distinct clusters and that utilities can use analytics to identify load profiles for greater energy efficiency.


Author(s):  
Suchismita Bhattacharjee ◽  
Georg Reichard

Energy consumption in the United States’ residential sector has been marked by a steady growth over the past few decades, in spite of the implementation of several energy efficiency policies. To develop effective energy policies for the residential sector, it is of utmost importance to study the various factors affecting residential energy consumption. Earlier studies have identified and classified various individual factors responsible for the increment in household energy consumption, and have also analyzed the effect of socio-economic factors such as standard-of-living and income on overall household energy consumption. This research study identifies the socio-economic factors affecting household energy consumption. Potential reasons for the variation in residential energy efficiency consumption have been investigated in previous studies that only represent viewpoints of investigators analyzing specific problems. Additionally, a comprehensive review of literature failed to reveal existing research that had systematically explored the interdependencies among the various factors that could possibly affect residential energy consumption to give an overall perspective of these factors. Widely used academic and scholarly scientific databases were employed by two independent investigators to search for original research investigations. A total of more than 200 research studies were found by the investigators, with almost ninety percent agreement between the two investigators. Based on the inclusion and exclusion criteria of this research study the authors systematically reviewed 51 prominent research studies to create a comprehensive list of factors affecting residential energy consumption. The results are discussed in this review.


2017 ◽  
Vol 42 (1) ◽  
pp. 52-57
Author(s):  
Cheng Sun ◽  
Meng Zhen ◽  
Yu Shao

Rural residential energy consumption accounts for 46.6% of total building-related energy consumption of China. In Northeast China, energy consumption for space heating represents a significant proportion of total rural residential energy consumption and has reached 100 million tce (tons of standard coal equivalent), or more than 60% of total household energy consumption. In terms of energy consumption per square meter of gross floor area, rural residential energy consumption for heating is more than that of cities (20kgce/m2). However, the average indoor temperature of most rural residence is below 10°C, much less than that in cities (18°C). Hence, it is an important task for Chinese energy saving and emission reduction to reduce rural residential energy consumption, while enhancing indoor thermal comfort at the same time. Restricted by local technology and low economic level, rural residences currently have poor thermal insulation resulting in severe heat loss. This paper reports on research aimed at developing design strategies for improving thermal insulation properties of rural residences with appropriate technology. A field survey was conducted in six counties in severe cold areas of Northeast China, addressing the aspects of indoor and outdoor temperature, humidity, internal and external surface temperature of building envelop enclosure, and so on. The survey data show the following: 1. Modern (after 2000) brick-cement rural residences perform much better than the traditional adobe clay houses and Tatou houses (a regional type of rural residence in Northeast China – see figure A) in overall thermal performance and indoor thermal comfort; 2. Among the traditional residential house types, adobe clay houses have better heat stability and thermal storage capacity than Tatou houses; 3. Applying an internal or external thermal insulation layer can greatly improve rural residential thermal insulation properties, and is an economical and efficient solution in rural areas; 4. In terms of roofing materials, tiled roofs show much better thermal insulation properties than thatch roofs; 5. Adopting passive solar techniques can form a transition space (greenhouse) against frigid temperatures, resulting in interior temperatures 5.91°C higher than the outside surroundings. It is evident that local passive solar room design offers significant heat preservation effects and lower cost ($12/m2), embodies the ecological wisdom of rural residents, and is therefore important to popularize. The above experimental results can provide guidance in energy conservation design for both self-built residences and rural residences designed by architects. In addition, the results can also provide experimental data for energy-saving studies for rural residences in China.


Sign in / Sign up

Export Citation Format

Share Document