Performance analysis of a multi crystalline Si photovoltaic module under Mugla climatic conditions in Turkey

2013 ◽  
Vol 65 ◽  
pp. 580-586 ◽  
Author(s):  
Rustu Eke ◽  
Huseyin Demircan
2015 ◽  
Vol 10 (11) ◽  
pp. 351-358 ◽  
Author(s):  
El Banany ELHADJ SIDI Cheikh ◽  
Lamine NDIAYE Mamadou ◽  
NDIAYE Ababacar ◽  
Alioune NDIAYE Papa

2019 ◽  
Vol 52 (9-10) ◽  
pp. 1308-1318
Author(s):  
Sudipta Basu Pal ◽  
Abhijit Das ◽  
Konika Das (Bhattacharya) ◽  
Dipankar Mukherjee

The photovoltaic module testing apparatus being used presently for photovoltaic measurements acts principally on the method of photovoltaic module loading with resistive, capacitive, and electronic elements. In this work, a new method is described using a supercapacitor as the load to the photovoltaic module. This technique of characterization has proved to generate reliable V–I characteristics as validated by statistical and mathematical analyses in this article. Heat dissipation affecting the functioning of the photovoltaic modules is a common occurrence with resistive and capacitive loading techniques. It is reduced significantly in this method using supercapacitors, and curve tracing time is extremely modest and easily controllable. In effect, a low-cost, portable, and reliable I–V plotter is developed, which is operational from an embedded systems platform integrated with smart sensors. This I–V tracer has been used for the performance assessment of solar modules ranging from 10 to 100 Wp under varying climatic conditions in the eastern region of India. This test kit so developed in the photovoltaic engineering laboratory at Indian Institute of Engineering Science and Technology, Shibpur, is estimated to be useful for practicing engineers and photovoltaic scientists and in particular for photovoltaic module manufacturers. The performance parameters such as fill factor and performance ratio of photovoltaic modules measured by the device have been found to have almost identical values as the measurements from a reference commercial testing apparatus. The data pertaining to peak wattage as measured by the designed plotter have been found to be closely converging with an industry-friendly YOKOGAWA Power Meter (WT 330). Such peak values of power as measured and claimed by the datasheets will help reduce the uncertainties in measurement, leading to increased confidence of photovoltaic module manufacturers and investors. With this backdrop, the necessary work for scaling up of the low-cost I–V plotter has been taken up for assessing the performance of higher wattage photovoltaic modules.


2014 ◽  
Vol 501-504 ◽  
pp. 2282-2287 ◽  
Author(s):  
Yu Hang Liao ◽  
Wei Lu ◽  
Lie Pan

The performance of a solar-driven air-cooled ejector refrigeration system using ammonia as refrigerant with rated cooling capacity of 10.5kW was analyzed for air-conditioning purpose. The cooling capacity of the proposed system increases with the rising of indoor temperature and enhancement of solar irradiance, while decreases with the rising of outdoor temperature. The COP has similar changing trend with that of the cooling capacity except that it increases rapidly with the enhancement of solar irradiance firstlyand then become stable by and large after solar irradiance exceeding a certain value. The cooling capacity is 6.3~52kW and the COP 0.06~0.11 under the normal operating conditions with indoor temperature over 27, outdoor temperature below 38°C and solar irradiance surpassing 500 W/m2. The proposed system can match the climatic conditions in air-conditioning season of Nanning, a typical city in hot summer and warm winter region.


Author(s):  
Fatou Ndiaye ◽  
Moustapha Sene ◽  
Modou Beye ◽  
Amadou S.H. Maiga

The main purpose of this paper is to evaluate the efficiency of a photovoltaic module operating in a sahelian country like Niger. A brief introduction to the behavior and the functioning of a photovoltaic module has been presented and the basic equations needed for a modeling based on ambient parameters have been also written. For the validation, characteristics of experimental purpose are presented with a satisfactory reliability degree. The effects of external parameters, mainly temperature, solar irradiance and wind speed have been considered on the output current characteristic and the output power characteristic. Due to their critical effects on the operation of the panel, effects of series resistances were also studied.


2020 ◽  
Vol 141 (1) ◽  
pp. 613-624 ◽  
Author(s):  
Ekrem Tunçbilek ◽  
Müslüm Arıcı ◽  
Salwa Bouadila ◽  
Surjamanto Wonorahardjo

Sign in / Sign up

Export Citation Format

Share Document