Power systems balancing with high penetration renewables: The potential of demand response in Hawaii

2013 ◽  
Vol 76 ◽  
pp. 609-619 ◽  
Author(s):  
D. Karl Critz ◽  
Sarah Busche ◽  
Stephen Connors
Mathematics ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 158
Author(s):  
Farzaneh Pourahmadi ◽  
Payman Dehghanian

Allocation of the power losses to distributed generators and consumers has been a challenging concern for decades in restructured power systems. This paper proposes a promising approach for loss allocation in power distribution systems based on a cooperative concept of game-theory, named Shapley Value allocation. The proposed solution is a generic approach, applicable to both radial and meshed distribution systems as well as those with high penetration of renewables and DG units. With several different methods for distribution system loss allocation, the suggested method has been shown to be a straight-forward and efficient criterion for performance comparisons. The suggested loss allocation approach is numerically investigated, the results of which are presented for two distribution systems and its performance is compared with those obtained by other methodologies.


2021 ◽  
Vol 13 (6) ◽  
pp. 3400
Author(s):  
Jia Ning ◽  
Sipeng Hao ◽  
Aidong Zeng ◽  
Bin Chen ◽  
Yi Tang

The high penetration of renewable energy brings great challenges to power system operation and scheduling. In this paper, a multi-timescale coordinated method for source-grid-load is proposed. First, the multi-timescale characteristics of wind forecasting power and demand response (DR) resources are described, and the coordinated framework of source-grid-load is presented under multi-timescale. Next, economic scheduling models of source-grid-load based on multi-timescale DR under network constraints are established in the process of day-ahead scheduling, intraday scheduling, and real-time scheduling. The loads are classified into three types in terms of different timescale. The security constraints of grid side and time-varying DR potential are considered. Three-stage stochastic programming is employed to schedule resources of source side and load side in day-ahead, intraday, and real-time markets. The simulations are performed in a modified Institute of Electrical and Electronics Engineers (IEEE) 24-node system, which shows a notable reduction in total cost of source-grid-load scheduling and an increase in wind accommodation, and their results are proposed and discussed against under merely two timescales, which demonstrates the superiority of the proposed multi-timescale models in terms of cost and demand response quantity reduction.


2021 ◽  
Vol 11 (14) ◽  
pp. 6620
Author(s):  
Arman Alahyari ◽  
David Pozo ◽  
Meisam Farrokhifar

With the recent advent of technology within the smart grid, many conventional concepts of power systems have undergone drastic changes. Owing to technological developments, even small customers can monitor their energy consumption and schedule household applications with the utilization of smart meters and mobile devices. In this paper, we address the power set-point tracking problem for an aggregator that participates in a real-time ancillary program. Fast communication of data and control signal is possible, and the end-user side can exploit the provided signals through demand response programs benefiting both customers and the power grid. However, the existing optimization approaches rely on heavy computation and future parameter predictions, making them ineffective regarding real-time decision-making. As an alternative to the fixed control rules and offline optimization models, we propose the use of an online optimization decision-making framework for the power set-point tracking problem. For the introduced decision-making framework, two types of online algorithms are investigated with and without projections. The former is based on the standard online gradient descent (OGD) algorithm, while the latter is based on the Online Frank–Wolfe (OFW) algorithm. The results demonstrated that both algorithms could achieve sub-linear regret where the OGD approach reached approximately 2.4-times lower average losses. However, the OFW-based demand response algorithm performed up to twenty-nine percent faster when the number of loads increased for each round of optimization.


2019 ◽  
Vol 149 ◽  
pp. 1359-1369 ◽  
Author(s):  
Majid Majidi ◽  
Behnam Mohammadi-Ivatloo ◽  
Amjad Anvari-Moghaddam

Energy ◽  
2019 ◽  
Vol 168 ◽  
pp. 1119-1127 ◽  
Author(s):  
Manijeh Alipour ◽  
Kazem Zare ◽  
Heresh Seyedi ◽  
Mehdi Jalali

Sign in / Sign up

Export Citation Format

Share Document