Advanced control system of DFIG based wind generators for reactive power production and integration in a wind farm dispatching

2015 ◽  
Vol 105 ◽  
pp. 240-250 ◽  
Author(s):  
T. Ghennam ◽  
K. Aliouane ◽  
F. Akel ◽  
B. Francois ◽  
E.M. Berkouk
2013 ◽  
Vol 756-759 ◽  
pp. 4171-4174 ◽  
Author(s):  
Xiao Ming Wang ◽  
Xing Xing Mu

With the Asynchronous wind generators as research object, this paper analyzes the problems of the voltage stability and the generation mechanism of the reactive power compensation during the wind farms connected operation. For paralleling capacitor bank has shown obvious defects, therefore this paper employs dynamic reactive power compensation to improve reactive characteristics of grid-connected wind farms. With the influences of different wind disturbances and grid faults on wind farms, wind farm model is set up and dynamic reactive power compensation system and wind speeds are built in the Matlab/Simulink software, The simulation result shows that they can provide reactive power compensation to ensure the voltage stability of the wind farms. But STATCOM needs less reactive compensation capacity to make sure the voltage and active power approaching steady state before the faults more quickly, Therefore STATCOM is more suitable for wind farms connected dynamic reactive power compensation.


Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 8 ◽  
Author(s):  
Davide Astolfi

Pitch angle control is the most common means of adjusting the torque of wind turbines. The verification of its correct function and the optimization of its control are therefore very important for improving the efficiency of wind kinetic energy conversion. On these grounds, this work is devoted to studying the impact of pitch misalignment on wind turbine power production. A test case wind farm sited onshore, featuring five multi-megawatt wind turbines, was studied. On one wind turbine on the farm, a maximum pitch imbalance between the blades of 4.5 ° was detected; therefore, there was an intervention for recalibration. Operational data were available for assessing production improvement after the intervention. Due to the non-stationary conditions to which wind turbines are subjected, this is generally a non-trivial problem. In this work, a general method was formulated for studying this kind of problem: it is based on the study, before and after the upgrade, of the residuals between the measured power output and a reliable model of the power output itself. A careful formulation of the model is therefore crucial: in this work, an automatic feature selection algorithm based on stepwise multivariate regression was adopted, and it allows identification of the most meaningful input variables for a multivariate linear model whose target is the power of the wind turbine whose pitch has been recalibrated. This method can be useful, in general, for the study of wind turbine power upgrades, which have been recently spreading in the wind energy industry, and for the monitoring of wind turbine performances. For the test case of interest, the power of the recalibrated wind turbine is modeled as a linear function of the active and reactive power of the nearby wind turbines, and it is estimated that, after the intervention, the pitch recalibration provided a 5.5% improvement in the power production below rated power. Wind turbine practitioners, in general, should pay considerable attention to the pitch imbalance, because it increases loads and affects the residue lifetime; in particular, the results of this study indicate that severe pitch misalignment can heavily impact power production.


2013 ◽  
Vol 291-294 ◽  
pp. 481-489 ◽  
Author(s):  
Yu Lin Hu ◽  
Lei Shi ◽  
Hao Ming Liu

This paper presents wind energy conversion model, drive shaft’s dual-mass model and generator’s transient mathematical model for the transient analysis of fixed speed asynchronous wind generators, and analyzes the transient characteristics of the wind generators under the condition of low voltage fault. The control principles of two dynamic reactive power compensation equipments as static var compensator (SVC) and static synchronous compensator (STATCOM) are introduced. Take a wind farm consists of fixed speed asynchronous wind generators as an example, the two compensation equipments are simulated in PowerFactory/DIgSILENT to compare the effort of them on enhancing the low voltage ride-through capability of the wind farm.


2013 ◽  
Vol 380-384 ◽  
pp. 3051-3056 ◽  
Author(s):  
Xiao Dan Wu ◽  
Wen Ying Liu

In this paper, starting from the active network loss formulas and wind characteristics, it is pointed out the reactive power loss and reactive flow is the major impact of wind power integration on power system loss. The reactive power loss formulas of box-type transformer, main step-up transformer, wind farm collector line and connecting grid line are analyzed. Next the reactive power loss of transformer and transmission line is described in detail. Then put forward the loss reduction measures that installing SVC on the low voltage side of the main step-up transformer and making the doubly-fed wind generators send out some reactive power at an allowed power factor. Use the case of Gansu Qiaodong wind farm to verify the effectiveness of the proposed measures.


Author(s):  
Boualam Benlahbib ◽  
Farid Bouchafaa ◽  
Saad Mekhilef ◽  
Noureddine Bouarroudj

This paper presents a comparative study between genetic algorithm and particle swarm optimization methods to determine the optimal proportional–integral (PI) controller parameters for a wind farm management algorithm. This study primarily aims to develop a rapid and stable system by tuning the PI controller, thus providing excellent monitoring for a wind farm system. The wind farm management system supervises the active and reactive power of the wind farm by sending references to each wind generator. This management system ensures that all wind generators achieve their required references. Furthermore, the entire management is included in the normal controlling power set points of the wind farm as designed by a central control system. The performance management of this study is tested through MATLAB/Simulink simulation results for the wind farm based on three doublyfed induction generators


2016 ◽  
Vol 65 (4) ◽  
pp. 643-656 ◽  
Author(s):  
Piotr Gajewski ◽  
Krzysztof Pieńkowski

Abstract The paper presents the advanced control system of the wind energy conversion with a variable speed wind turbine. The considered system consists of a wind turbine with the permanent magnet synchronous generator (PMSG), machine side converter (MSC), grid side converter (GSC) and control circuits. The mathematical models of a wind turbine system, the PMSG generator and converters have been described. The control algorithms of the converter systems based on the methods of vector control have been applied. In the advanced control system of the machine side converter the optimal MPPT control method has been used. Additionally the pitch control scheme is included in order to achieve the limitation of maximum power and to prevent mechanical damage of the wind turbine. In the control system of the grid side converter the control of active and reactive power has been applied with the application of Voltage Oriented Control (VOC). The performance of the considered wind energy system has been studied by digital simulation. The results of simulation studies confirmed the good effectiveness of the considered wind turbine system and very good performance of the proposed methods of vector control and control systems.


Sign in / Sign up

Export Citation Format

Share Document