Thermodynamic analysis of solar energy integrated underground coal gasification in the context of cleaner fossil power generation

2016 ◽  
Vol 110 ◽  
pp. 67-77 ◽  
Author(s):  
Ankan Shrivastava ◽  
V. Prabu
Author(s):  
Tuantuan Xin ◽  
Cheng Xu ◽  
Gang Xu ◽  
Wenyi Liu ◽  
Yongping Yang

To advance the utilization of the solar energy and coal resources as well as improve the flexibility of coal-based power plant, an improved solar-coal hybrid system for methanol production and power generation is proposed and thermodynamically analyzed. In the proposed system, the concentrated solar energy at high-temperature is used for heating the coal gasification to produce syngas for methanol synthesis; the waste material and heat from coal-to-methanol process are efficiently recovered in the conjunct power generation system; and the surplus electric power is optionally used for methanol synthesis by electrolysis process during the off-peak period. Through employing the proposed system, the solar energy and electricity (optional) could be effectively converted into methanol as stable chemical energy together with a preferable overall system thermal efficiency. The thermodynamic analysis results showed that, the overall energy and exergy efficiencies reaches 48.6 and 47.3%, respectively; the equivalent solar-to-methanol conversion efficiency can soar to 66.2%; and the net electricity-to-methanol efficiency reaches 61.6% with the power load reducing from 48.7% to 31.0%.


Author(s):  
Michael S. Blinderman

Underground Coal Gasification (UCG) is a gasification process carried on in non-mined coal seams using injection and production wells drilled from the surface, converting coal in situ into a product gas usable for chemical processes and power generation. The UCG process developed, refined and practiced by Ergo Exergy Technologies is called the Exergy UCG Technology or εUCG® Technology. The εUCG technology is being applied in numerous power generation and chemical projects worldwide. These include power projects in South Africa (1,200 MWe), India (750 MWe), Pakistan, and Canada, as well as chemical projects in Australia and Canada. A number of εUCG based industrial projects are now at a feasibility stage in New Zealand, USA, and Europe. An example of εUCG application is the Chinchilla Project in Australia where the technology demonstrated continuous, consistent production of commercial quantities of quality fuel gas for over 30 months. The project is currently targeting a 24,000 barrel per day synthetic diesel plant based on εUCG syngas supply. The εUCG technology has demonstrated exceptional environmental performance. The εUCG methods and techniques of environmental management are an effective tool to ensure environmental protection during an industrial application. A εUCG-IGCC power plant will generate electricity at a much lower cost than existing or proposed fossil fuel power plants. CO2 emissions of the plant can be reduced to a level 55% less than those of a supercritical coal-fired plant and 25% less than the emissions of NG CC.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Duan Tianhong ◽  
Wang Zuotang ◽  
Zhou Limin ◽  
Li Dongdong

To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.


2014 ◽  
Vol 1 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Dipankar Chatterjee ◽  
◽  
Satish Gupta ◽  
Chebolu Aravind ◽  
Rakesh Roshan

Sign in / Sign up

Export Citation Format

Share Document