Effect of oxygen and steam on gasification and power generation in industrial tests of underground coal gasification

Fuel ◽  
2021 ◽  
Vol 289 ◽  
pp. 119855
Author(s):  
Wen-gang Huang ◽  
Zuo-tang Wang ◽  
Tian-hong Duan ◽  
Lin Xin
Author(s):  
Michael S. Blinderman

Underground Coal Gasification (UCG) is a gasification process carried on in non-mined coal seams using injection and production wells drilled from the surface, converting coal in situ into a product gas usable for chemical processes and power generation. The UCG process developed, refined and practiced by Ergo Exergy Technologies is called the Exergy UCG Technology or εUCG® Technology. The εUCG technology is being applied in numerous power generation and chemical projects worldwide. These include power projects in South Africa (1,200 MWe), India (750 MWe), Pakistan, and Canada, as well as chemical projects in Australia and Canada. A number of εUCG based industrial projects are now at a feasibility stage in New Zealand, USA, and Europe. An example of εUCG application is the Chinchilla Project in Australia where the technology demonstrated continuous, consistent production of commercial quantities of quality fuel gas for over 30 months. The project is currently targeting a 24,000 barrel per day synthetic diesel plant based on εUCG syngas supply. The εUCG technology has demonstrated exceptional environmental performance. The εUCG methods and techniques of environmental management are an effective tool to ensure environmental protection during an industrial application. A εUCG-IGCC power plant will generate electricity at a much lower cost than existing or proposed fossil fuel power plants. CO2 emissions of the plant can be reduced to a level 55% less than those of a supercritical coal-fired plant and 25% less than the emissions of NG CC.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Duan Tianhong ◽  
Wang Zuotang ◽  
Zhou Limin ◽  
Li Dongdong

To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.


Author(s):  
Apriansyah Zulatama ◽  
Aida Syarif ◽  
Muhammad Yerizam

Underground Coal Gasification (UCG) is a process of converting coal in the ground into synthetic gas that has economic value. In the UCG process which will be carried out in the UCG prototype assisted by the presence of oxygen as a gasification agent, which this gasification agent will help the process of burning coal in the ground. The flow rate of oxygen in the process of UCG affecting the coal combustion temperature and effective flame from burning coal. The highest temperature at a flow rate of 5 l/min is 240oC, at an oxygen flow rate of 3 l/min the highest temperature is 143oC and at an oxygen flow rate of 2 l/min the highest temperature is 135oC and time effective flame at a flow rate of 5 l / min ie 80 minutes, effective burning time on the speed of the flow rate of 3 l / min ie for 120 minutes and time effective flame at a flow rate of 2 l / min ie for 165 minutes. This study proves that the greater the oxygen flow rate is used as the gasification agent at UCG process the lignite coal combustion temperatures will be high and effective flame coal combustion process will be more brief.


2014 ◽  
Vol 1 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Dipankar Chatterjee ◽  
◽  
Satish Gupta ◽  
Chebolu Aravind ◽  
Rakesh Roshan

Author(s):  
Marian Wiatowski ◽  
Roksana Muzyka ◽  
Krzysztof Kapusta ◽  
Maciej Chrubasik

AbstractIn this study, the composition of tars collected during a six-day underground coal gasification (UCG) test at the experimental mine ‘Barbara’ in Poland in 2013 was examined. During the test, tar samples were taken every day from the liquid product separator and analysed by the methods used for testing properties of typical coke oven (coal) tar. The obtained results were compared with each other and with the data for coal tar. As gasification progressed, a decreasing trend in the water content and an increasing trend in the ash content were observed. The tars tested were characterized by large changes in the residue after coking and content of parts insoluble in toluene and by smaller fluctuations in the content of parts insoluble in quinoline. All tested samples were characterized by very high distillation losses, while for samples starting from the third day of gasification, a clear decrease in losses was visible. A chromatographic analysis showed that there were no major differences in composition between the tested tars and that none of the tar had a dominant component such as naphthalene in coal tar. The content of polycyclic aromatic hydrocarbons (PAHs) in UCG tars is several times lower than that in coal tar. No light monoaromatic hydrocarbons (benzene, toluene, ethylbenzene and xylenes—BTEX) were found in the analysed tars, which results from the fact that these compounds, due to their high volatility, did not separate from the process gas in the liquid product separator.


Sign in / Sign up

Export Citation Format

Share Document