Thermal performance of solar air collection-storage system with phase change material based on flat micro-heat pipe arrays

2017 ◽  
Vol 142 ◽  
pp. 230-243 ◽  
Author(s):  
Teng-yue Wang ◽  
Yan-hua Diao ◽  
Ting-ting Zhu ◽  
Yao-hua Zhao ◽  
Jing Liu ◽  
...  
Computation ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Riheb Mabrouk ◽  
Hassane Naji ◽  
Hacen Dhahri ◽  
Zouhir Younsi

In this investigation, a comprehensive numerical analysis of the flow involved in an open-ended straight channel fully filled with a porous metal foam saturated and a phase change material (paraffin) has been performed using a single relaxation time lattice Boltzmann method (SRT-LBM) at the representative elementary volume (REV) scale. The enthalpy-based approach with three density functions has been employed to cope with the governing equations under the local thermal non-equilibrium (LTNE) condition. The in-house code has been validated through a comparison with a previous case in literature. The pore per inch density (10≤PPI≤60) and porosity (0.7≤ε≤0.9) effects of the metal structure were analyzed during melting/solidifying phenomena at two Reynolds numbers (Re = 200 and 400). The relevant findings are discussed for the LTNE intensity and the entropy generation rate (Ns). Through the simulations, the LTNE hypothesis turned out to be secure and valid. In addition, it is maximum for small PPI value (=10) whatever the parameters deemed. On the other hand, high porosity (=0.9) is advised to reduce the system’s irreversibility. However, at a moderate Re (=200), a small PPI (=10) would be appropriate to mitigate the system irreversibility during the charging case, while a large value (PPI = 60) might be advised for the discharging case. In this context, it can be stated that during the melting period, low porosity (=0.7) with low PPI (=10) improves thermal performance, reduces the system irreversibility and speeds up the melting rate, while for high porosity (=0.9), a moderate PPI (=30) should be used during the melting process to achieve an optimal system.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Sandesh S. Chougule ◽  
S. K. Sahu

The paper reports the thermal performance of a nanofluid (MCNT/water) charged heat pipe with phase change material (PCM) as energy storage material (ESM) for electronic cooling. The adiabatic section of heat pipe is covered by the PCM stored in a container made of acrylic material. Here, paraffin is used as PCM. PCM can absorb and release thermal energy depending upon the fluctuations in the heating load. Tests are conducted to obtain the temperature distributions in PCM during charge/discharge processes. Present study utilizes two different ESM (water and paraffin), different fan speeds and heating powers in the PCM cooling module. The cooling module with heat pipe and paraffin as ESM found to save higher fan power consumption compared to the cooling module that utilities only a heat pipe.


Sign in / Sign up

Export Citation Format

Share Document