scholarly journals Dynamic simulation, control, and performance evaluation of a synergistic solar and natural gas hybrid power plant

2019 ◽  
Vol 179 ◽  
pp. 270-285 ◽  
Author(s):  
Khalid Rashid ◽  
Seyed Mostafa Safdarnejad ◽  
Kody M. Powell
2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Pantelis N. Botsaris ◽  
Alexandros G. Pechtelidis ◽  
Konstantinos A. Lymperopoulos

The present work is focused on the development of a simulation model for an existing cogeneration power plant, which utilizes a solar thermal field with parabolic trough solar collectors coupled to an Organic Rankine Cycle engine. The power plant is modeled in the trnsys v.17 software package and its performance has been validated with real operating conditions. The simulated system (concentrated solar power (CSP) field and ORC engine) is the main part of a hybrid power plant located near “Ziloti” village of the Municipality of Xanthi, in northeastern Greece. The construction of the hybrid power plant was funded by the Strategic Co-Funded Project of the European Territorial Cooperation Program Greece–Bulgaria 2007–2013 with the acronym ENERGEIA. The power plant simulated in this paper includes a 234 kWth solar parabolic trough collector (PTC) field, a 5 m3 thermal energy storage tank, and a 5 kWe ORC engine for the production of thermal and electrical energies. The results of the simulations present small deviation in contrast to the real operating data of the CSP power plant coupled with the ORC engine, therefore the simulation model is considered as reliable.


2018 ◽  
Vol 228 ◽  
pp. 33-41 ◽  
Author(s):  
Stefano Barsali ◽  
Alessio Ciambellotti ◽  
Romano Giglioli ◽  
Fabrizio Paganucci ◽  
Gianluca Pasini

Author(s):  
Mircea Fetescu

The High Efficiency-Coal and Gas (HE-C&G) is a hybrid power plant concept integrating Conventional Steam Power Plants (CSPP) and gas turbine / combined cycle plants. The gas turbine exhaust gas energy is recovered in the HRSG providing partial condensate and feedwater preheating and generating steam corresponding to the main boiler live steam conditions (second steam source for the ST). The concept, exhibiting very high design flexibility, integrates the high performance Sequential Combustion gas turbines GT24/GT26 technology into a wide range of existing or new CSPP. Although HE-C&G refers to coal as the most abundant fossil fuel resource, oil or natural gas fired steam plants could be also designed or converted following the same principle. The HE-C&G provides very high marginal efficiencies on natural gas, up to and above 60%, very high operating and dispatching flexibility and on-line optimization of fuel and O&M costs at low capital investment. This paper emphasizes the operating flexibility and resulting benefits, recommending the HE-C&G as one of the most profitable options for generating power especially for conversion of existing CSPP with gas turbines.


2018 ◽  
Vol 13 (2) ◽  
pp. 107
Author(s):  
Flur Ismagilov ◽  
Vajcheslav Vavilov ◽  
Oksana Yushkova ◽  
Vladimir Bekuzin ◽  
Alexey Veselov

2019 ◽  
Vol 8 (4) ◽  
pp. 9449-9456

This paper proposes the reliability index of wind-solar hybrid power plants using the expected energy not supplied method. The location of this research is wind-solar hybrid power plants Pantai Baru, Bantul, Special Region of Yogyakarta, Indonesia. The method to determine the reliability of the power plant is the expected energy not supplied (EENS) method. This analysis used hybrid plant operational data in 2018. The results of the analysis have been done on the Pantai Baru hybrid power plant about reliability for electric power systems with EENS. The results of this study can be concluded that based on the load duration curve, loads have a load more than the operating kW of the system that is 99 kW. In contrast, the total power contained in the Pantai Baru hybrid power plant is 90 kW. This fact makes the system forced to release the load. The reliability index of the power system in the initial conditions, it produces an EENS value in 2018, resulting in a total value of 2,512% or 449 kW. The EENS value still does not meet the standards set by the National Electricity Market (NEM), which is <0.002% per year. Based on this data, it can be said that the reliability of the New Coast hybrid power generation system in 2018 is in the unreliable category.


IEEE Access ◽  
2016 ◽  
Vol 4 ◽  
pp. 8793-8804 ◽  
Author(s):  
Michel R. Miyazaki ◽  
Asgeir J. Sorensen ◽  
Nicolas Lefebvre ◽  
Kevin K. Yum ◽  
Eilif Pedersen

Sign in / Sign up

Export Citation Format

Share Document