Experimental results from the Bathμ-wave rotor turbine performance tests

2019 ◽  
Vol 189 ◽  
pp. 33-48
Author(s):  
Stefan Tüchler ◽  
Colin D. Copeland
Author(s):  
W. Tabakoff ◽  
A. N. Lakshminarasimha ◽  
M. Pasin

Experimental results obtained from cascades and one stage compressor performance tests before and after erosion were used to test a fault model to represent erosion. This model was implemented on a stage stacking program developed to demonstrate the effect of erosion in a multistage compressor. The effect of the individual stage erosion on the overall compressor performance is also demonstrated.


Author(s):  
I. Roumeliotis ◽  
K. Mathioudakis

Water is always present in the atmospheric air in the form of vapour, affecting the operation of turbomachinery components in gas turbine engines. Due to water presence in the working medium, condensation may occur, which can influence the thermal performance of the component and alter the measurements taken for calculations. This can lead to erroneous evaluation of component performance parameters during development performance tests. Procedures to detect condensation and if possible to correct the measurements during engine or component test should be used to avoid such situations. A method allowing the prediction of condensation and the correction of the measurements for low speed expansion is presented. The method is implemented in turbine testing measurements where condensation occurs and the results show that condensation may be predicted and its effects corrected.


Author(s):  
A. Keshavarz ◽  
K. S. Chapman ◽  
J. Shultz ◽  
D. G. Kuiper

Rising fuel costs and increasingly stringent emission standards push engineers to develop more efficient turbo-machinery. Reducing turbocharger turbine tip clearance is one method of improving turbine performance, thereby improving overall engine operation. By using tip seals or abradable seals, reduction of this clearance is possible. Metco 314 NS material was applied to an Elliot-H type turbocharger turbine shroud to reduce the cold clearance from 0.762 mm (0.030 inch) to 0.457mm (0.018 inch). Two separate yet virtually identical performance tests were conducted at speeds of 13,000 rpm, 15,000 rpm, and 17,000 rpm on the turbocharger. The first test established the efficiency condition of the turbocharger with the tip seal installed. The second was to quantify a decrease in efficiency, if present, after the tip seal was removed. Both tests were conducted as identically as possible. The average amount of available energy not utilized with the tip seal removed was 30.26 kW at 13,000 rpm, 51.42 kW at 15,000 rpm and 45.71 kW at 17,000 rpm.


1976 ◽  
Vol 98 (1) ◽  
pp. 103-113
Author(s):  
H. Nouse ◽  
A. Yamamoto ◽  
T. Yoshida ◽  
H. Nishimura ◽  
K. Takahara ◽  
...  

In order to investigate several problems associated with the turbine cooling, an air-cooled two-stage axial flow turbine for an aircraft engine application was designed. Aerodynamic characteristics of the two-stage turbine without coolants were obtained first from the cold air turbine tests, and predictions of the turbine performance with supplying of coolants were made using the test results. Following these experiments, cooling tests of the first stage turbine were conducted in the range of turbine inlet gas temperatures lower than 1360 K by the another test apparatus. The descriptions of the turbine and the two test apparatus and the experimental results of the two test turbines are presented. The performance prediction, coolant effects and Reynolds number effect on the turbine performance are also described.


2021 ◽  
Vol 7 (9) ◽  
pp. 90435-90454
Author(s):  
Fábio Yukio Nara ◽  
Eduardo Massashi Yamao ◽  
Gabriel Maidl ◽  
Irene Bida de Araujo Fernandes Siqueira ◽  
Julyeverson Dos Reis ◽  
...  

1994 ◽  
Vol 116 (2) ◽  
pp. 287-292 ◽  
Author(s):  
Yukimaru Shimizu ◽  
Takaya Yoshikawa ◽  
Shinji Matsumura

This paper describes the experimental results of output power augmentation of a horizontal axis wind turbine with a tip vane. In order to find the relationship between the performance of the turbine and the configuration of the tip vane, various types and sizes were used. It was found that V-type and S-type tip vanes can improve turbine performance. Also, the dimensions of V- and S-type tip vanes were investigated. The maximum improvement achieved was a 25 percent increase in power in an existing wind turbine without a tip vane.


Author(s):  
Mohd Shuisma Mohd Ismail ◽  
Mohammad Nazri Mohd Jaafar ◽  
S. M. Fauzi ◽  
Muhamad Roslan Rahim ◽  
Mazlan Said ◽  
...  

In this study, pure Jatropha oil (inedible plant oil) was converted into biodiesel (Jatropha Methyl-Ester or JME) through an esterification and trans-esterification process. It is then blended with commercial diesel in various ratios to produce four different blends. The ratio of Jatropha biodiesel to diesel (Jatropha:diesel) is 5:95% (B5), 10:90% (B10), 15:85% (B15) and 20:80% (B20). The letter B indicates the total volume of biodiesel in a mixture with diesel. Each batch of the fuel blend was then tested for their physical properties compared to diesel. Combustion performance tests were performed and temperature and emission (NOx and CO) profiles were measured at five different equivalence ratios. Experimental results are presented and they show that the temperature profile of each mixture does not exceed the value of diesel, and results in lower emissions (NOx and CO) than diesel.


1990 ◽  
Vol 112 (1) ◽  
pp. 78-83 ◽  
Author(s):  
W. Tabakoff ◽  
A. N. Lakshminarasimha ◽  
M. Pasin

Experimental results obtained from cascades and single-stage compressor performance tests before and after erosion were used to test a fault model to represent erosion. This model was implemented on a stage stacking program developed to demonstrate the effect of erosion in a multistage compressor. The effect of individual stage erosion on the overall compressor performance is also demonstrated.


Sign in / Sign up

Export Citation Format

Share Document