Wind power forecasting based on daily wind speed data using machine learning algorithms

2019 ◽  
Vol 198 ◽  
pp. 111823 ◽  
Author(s):  
Halil Demolli ◽  
Ahmet Sakir Dokuz ◽  
Alper Ecemis ◽  
Murat Gokcek

A significant and eligible source such as wind energy has the potential for producing energy in a continuous and sustainable manner among renewable energy sources. However, wind energy has several challenges, such as initial investment costs, the stationary property of wind plants, and the difficulty in finding wind-efficient energy areas. In this study, wind power forecasting was performed based on daily wind speed data using machine learning algorithms. The proposed method is based on machine learning algorithms to forecast wind power values efficiently. Tests were conducted on data sets to reveal performances of machine learning algorithms. The results showed that machine learning algorithms could be used for forecasting long-term wind power values with respect to historical wind speed data. Furthermore, several machine learning models were built for analysis on the accuracy level of the respective models, i.e, the accuracy levels of the machine.


2021 ◽  
pp. 513-522
Author(s):  
Ayush Kumar ◽  
Neeraj Kumar ◽  
Bharat Singh ◽  
Aditya Chaudhary ◽  
Karan Dikshit ◽  
...  

Author(s):  
V. Chandran ◽  
Chandrashekhar K. Patil ◽  
Anto Merline Manoharan ◽  
Aritra Ghosh ◽  
M.G. Sumithra ◽  
...  

2021 ◽  
Vol 2141 (1) ◽  
pp. 012016
Author(s):  
Hao Chen ◽  
Yngve Birkelund

Abstract Wind power forecasting is crucial for wind power systems, grid load balance, maintenance, and grid operation optimization. The utilization of wind energy in the Arctic regions helps reduce greenhouse gas emissions in this environmentally vulnerable area. In the present study, eight various models, seven of which are representative machine learning algorithms, are used to make 1, 2, and 3 step hourly wind power predictions for five wind parks inside the Norwegian Arctic regions, and their performance is compared. Consequently, we recommend the persistence model, multilayer perceptron, and support vector regression for univariate time-series wind power forecasting within the time horizon of 3 hours.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fang Yao ◽  
Wei Liu ◽  
Xingyong Zhao ◽  
Li Song

This paper develops an integrated machine learning and enhanced statistical approach for wind power interval forecasting. A time-series wind power forecasting model is formulated as the theoretical basis of our method. The proposed model takes into account two important characteristics of wind speed: the nonlinearity and the time-changing distribution. Based on the proposed model, six machine learning regression algorithms are employed to forecast the prediction interval of the wind power output. The six methods are tested using real wind speed data collected at a wind station in Australia. For wind speed forecasting, the long short-term memory (LSTM) network algorithm outperforms other five algorithms. In terms of the prediction interval, the five nonlinear algorithms show superior performances. The case studies demonstrate that combined with an appropriate nonlinear machine learning regression algorithm, the proposed methodology is effective in wind power interval forecasting.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 338
Author(s):  
Lorenzo Donadio ◽  
Jiannong Fang ◽  
Fernando Porté-Agel

In the past two decades, wind energy has been under fast development worldwide. The dramatic increase of wind power penetration in electricity production has posed a big challenge to grid integration due to the high uncertainty of wind power. Accurate real-time forecasts of wind farm power outputs can help to mitigate the problem. Among the various techniques developed for wind power forecasting, the hybridization of numerical weather prediction (NWP) and machine learning (ML) techniques such as artificial neural networks (ANNs) are attracting many researchers world-wide nowadays, because it has the potential to yield more accurate forecasts. In this paper, two hybrid NWP and ANN models for wind power forecasting over a highly complex terrain are proposed. The developed models have a fine temporal resolution and a sufficiently large prediction horizon (>6 h ahead). Model 1 directly forecasts the energy production of each wind turbine. Model 2 forecasts first the wind speed, then converts it to the power using a fitted power curve. Effects of various modeling options (selection of inputs, network structures, etc.) on the model performance are investigated. Performances of different models are evaluated based on four normalized error measures. Statistical results of model predictions are presented with discussions. Python was utilized for task automation and machine learning. The end result is a fully working library for wind power predictions and a set of tools for running the models in forecast mode. It is shown that the proposed models are able to yield accurate wind farm power forecasts at a site with high terrain and flow complexities. Especially, for Model 2, the normalized Mean Absolute Error and Root Mean Squared Error are obtained as 8.76% and 13.03%, respectively, lower than the errors reported by other models in the same category.


2020 ◽  
Author(s):  
Paolo Scarabaggio ◽  
Sergio Grammatico ◽  
Raffaele Carli ◽  
Mariagrazia Dotoli

In this paper, we propose a distributed demand side management (DSM) approach for smart grids taking into account uncertainty in wind power forecasting. The smart grid model comprehends traditional users as well as active users (prosumers). Through a rolling-horizon approach, prosumers participate in a DSM program, aiming at minimizing their cost in the presence of uncertain wind power generation by a game theory approach.<br>We assume that each user selfishly formulates its grid optimization problem as a noncooperative game.<br>The core challenge in this paper is defining an approach to cope with the uncertainty in wind power availability. <br>We tackle this issue from two different sides: by employing the expected value to define a deterministic counterpart for the problem and by adopting a stochastic approximated framework.<br>In the latter case, we employ the sample average approximation technique, whose results are based on a probability density function (PDF) for the wind speed forecasts. We improve the PDF by using historical wind speed data, and by employing a control index that takes into account the weather condition stability.<br><div>Numerical simulations on a real dataset show that the proposed stochastic strategy generates lower individual costs compared to the standard expected value approach.</div><div><br></div><div>Preprint of paper submitted to IEEE Transactions on Control Systems Technology<br></div>


Sign in / Sign up

Export Citation Format

Share Document