Wind tunnel experiment on the influence of array configuration on the power performance of vertical axis wind turbines

2021 ◽  
Vol 241 ◽  
pp. 114299
Author(s):  
Hao Su ◽  
Haoran Meng ◽  
Timing Qu ◽  
Liping Lei
2021 ◽  
Author(s):  
Hao Su ◽  
Haoran Meng ◽  
Jia Guo ◽  
Timing Qu ◽  
Liping Lei

Abstract Wind energy has attracted worldwide attention as a pollution-free and widely distributed renewable energy source. Increasing the power density by optimizing the arrangement of wind turbines has been a popular field of research in recent years. In the present work, a systematic study on the influence of array configuration on vertical axis wind turbines is made through wind tunnel experiments. Firstly, the power performance of an isolated vertical axis wind turbine at different tip speed ratios is tested as a benchmark of comparison. Multiple situations of two-turbine configurations are then tested and the results are compared with the isolated wind turbine. The power coefficient of the turbine pair increases by 34% when the turbines are 2.4 rotor diameters apart and rotate in the same direction. In the counter-rotating co-leeward case, it is demonstrated that the turbine pairs will have a positive effect on each other when they are separated by 2.1 rotor diameters to 2.4 rotor diameters. The lateral spacing between the counter-rotating co-windward turbine pair should be greater than 1.5 rotor diameters to avoid turbulence interference between the rotors.


2017 ◽  
Vol 199 ◽  
pp. 3176-3181 ◽  
Author(s):  
Andreu Carbó Molina ◽  
Gianni Bartoli ◽  
Tim de Troyer

2017 ◽  
Vol 9 (3) ◽  
pp. 033302 ◽  
Author(s):  
Silvana Tourn ◽  
Jordi Pallarès ◽  
Ildefonso Cuesta ◽  
Uwe Schmidt Paulsen

2021 ◽  
Author(s):  
Mohammad Sadman Sakib ◽  
D. Todd Griffith

Abstract. A good understanding of aerodynamic loading is essential in the design of vertical axis wind turbines (VAWTs) to properly capture design loads and to estimate the power production. This paper presents a comprehensive aerodynamic design study for a 5 MW Darrieus offshore VAWT in the context of multi-megawatt floating VAWTs. This study systematically analyzes the effect of different, important design variables including the number of blades (N), aspect ratio (AR) and blade tapering in a comprehensive loads analysis of both the parked and operating aerodynamic loads including turbine power performance analysis. Number of blades (N) is studied for 2- and 3-bladed turbines, aspect ratio is defined as ratio of rotor height (H) and rotor diameter (D) and studied for values from 0.5 to 1.5, and blade tapering is applied by means of adding solidity to the blades towards blade root ends, which affects aerodynamic and structural performance. Analyses were carried out using a three-dimensional vortex model named CACTUS (Code for Axial and Crossflow TUrbine Simulation) to evaluate both instantaneous azimuthal parameters as well as integral parameters, such as loads (thrust force, lateral force, and torque loading) and power. Parked loading is a major concern for VAWTs, thus this work presents a broad evaluation of parked loads for the design variables noted above. This study also illustrates that during the operation of a turbine, lateral loads are on par with thrust loads, which will significantly affect the structural sizing of rotor and platform & mooring components.


2014 ◽  
pp. 1001-1004
Author(s):  
H. Dumitrescu ◽  
A. Dumitrache ◽  
C.L. Popescu ◽  
M.O. Popescu ◽  
F. Frunzulică ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Milad Mousavi ◽  
Mehran Masdari ◽  
Mojtaba Tahani

Purpose Nowadays flaps and winglets are one of the main mechanisms to increase airfoil efficiency. This study aims to investigate the power performance of vertical axis wind turbines (VAWT) that are equipped with diverse gurney flaps. This study could play a crucial role in the design of the VAWT in the future. Design/methodology/approach In this paper, the two-dimensional computational fluid dynamics simulation is used. The second-order finite volume method is used for the discretization of the governing equations. Findings The results show that the gurney flap enhances the power coefficient at the low range of tip speed ratio (TSR). When an angled and standard gurney flap case has the same aerodynamic performance, an angled gurney flap case has a lower hinge moment on the junction of airfoil and gurney flap which shows the structural excellence of this case. In all gurney flap cases, the power coefficient increases by an average of 20% at the TSR range of 0.6 to 1.8. The gurney flap cases do not perform well at the high TSR range and the results show a lower amount of power coefficient compare to the clean airfoil. Originality/value The angled gurney flap which has the structural advantage and is deployed to the pressure side of the airfoil improves the efficiency of VAWT at the low and medium range of TSR. This study recommends using a controllable gurney flap which could be deployed at a certain amount of TSR.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abhijeet M. Malge ◽  
Prashant Maruti Pawar

Purpose Three different configurations of vertical axis wind turbines (VAWT) were fabricated by changing the storey height and their orientations. The purpose of this study is to find the effect of storey height and orientation on the performance of wind turbines. The multistory VAWT has three storeys. The first configuration had increased middle storey height, with 0–90-0 orientation of blades. Wherein the second turbine had equal storey heights. The third configuration had increased middle storey height with 0–120-240 orientation of blades. The blades were tested numerically and experimentally. Design/methodology/approach In this research work, prototypes of innovative multistory VAWT were built with different configurations and orientations. Three configurations of three-storey VAWT were fabricated by varying the height of storey of turbines. The orientations were made by keeping the storeys orthogonal to each other. Multistory VAWT was tested numerically and experimentally. ANSYS Fluent was used for computational fluid dynamic analysis of VAWT. K-epsilon model was used for numerical analysis of wind turbine. Experimentation was carried out in a wind tunnel for different tip speed ratios (TSR). Findings The three configurations of innovative multistory VAWT were tested numerically and experimentally for different TSR. It has been found that the VAWT with equal storey height had a better performance as compared to the other two configurations with increased middle storey height. The power coefficient of equal storey height VAWT was about 22%, wherein the power coefficient of turbines with reduced upper and lower storey height was between 5%–8% Research limitations/implications The research work of multi-storey VAWT is very novel and original. The findings of the research will contribute to the existing work done in the field of VAWT. This will help other researchers to have insight into the development of multistory VAWT. The effect of storey height and configuration of multi-storey VAWT is studied numerically and experimentally, which concludes that the performance of equal storey is superior as compared to other configurations. Practical implications The multi-storey concept of VAWT was developed to counter the problem of wind direction. The blades of each storey were arranged orthogonal to each other. This helped to harness wind power irrespective of the direction of the wind. This will make the VAWT more sustainable and financially viable for domestic use. Social implications The turbines are specially designed for remotely located housed in rural areas where the power grid is not yet reached. Users can install the turbine on their rooftop and harness wind power of 100 W capacity. This will help them to make their life easy. Originality/value This research work is very original and first of a kind. The multistory concept of the wind turbine was checked for the effect of storey height and orientations of blades on its performance. Different configurations and orientations of the vertical axis were designed and developed for the first time.


Author(s):  
L. Battisti ◽  
L. Zanne ◽  
S. Dell’Anna ◽  
V. Dossena ◽  
B. Paradiso ◽  
...  

This paper presents the first results of a wide experimental investigation on the aerodynamics of a vertical axis wind turbine. Vertical axis wind turbines have recently received particular attention, as interesting alternative for small and micro generation applications. However, the complex fluid dynamic mechanisms occurring in these machines make the aerodynamic optimization of the rotors still an open issue and detailed experimental analyses are now highly recommended to convert improved flow field comprehensions into novel design techniques. The experiments were performed in the large-scale wind tunnel of the Politecnico di Milano (Italy), where real-scale wind turbines for micro generation can be tested in full similarity conditions. Open and closed wind tunnel configurations are considered in such a way to quantify the influence of model blockage for several operational conditions. Integral torque and thrust measurements, as well as detailed aerodynamic measurements were applied to characterize the 3D flow field downstream of the turbine. The local unsteady flow field and the streamwise turbulent component, both resolved in phase with the rotor position, were derived by hot wire measurements. The paper critically analyses the models and the correlations usually applied to correct the wind tunnel blockage effects. Results evidence that the presently available theoretical correction models does not provide accurate estimates of the blockage effect in the case of vertical axis wind turbines. The tip aerodynamic phenomena, in particular, seem to play a key role for the prediction of the turbine performance; large-scale unsteadiness is observed in that region and a simple flow model is used to explain the different flow features with respect to horizontal axis wind turbines.


2021 ◽  
Vol 11 (13) ◽  
pp. 5874
Author(s):  
Andrea G. Sanvito ◽  
Vincenzo Dossena ◽  
Giacomo Persico

Low order models based on the Blade Element Momentum (BEM) theory exhibit modeling issues in the performance prediction of Vertical Axis Wind Turbines (VAWT) compared to Computational Fluid Dynamics, despite the widespread engineering practice of such methods. The present study shows that the capability of BEM codes applied to VAWTs can be greatly improved by implementing a novel three-dimensional set of high-order corrections and demonstrates this by comparing the BEM predictions against wind-tunnel experiments conducted on three small-scale VAWT models featuring different rotor design (H-shaped and Troposkein), blade profile (NACA0021 and DU-06-W200), and Reynolds number (from 0.8×105 to 2.5×105). Though based on the conventional Double Multiple Stream Tube (DMST) model, the here-presented in-house BEM code incorporates several two-dimensional and three-dimensional corrections including: accurate extended polar data, flow curvature, dynamic stall, a spanwise-distributed formulation of the tip losses, a fully 3D approach in the modeling of rotors featuring general shape (such as but not only, the Troposkein one), and accounting for the passive effects of supporting struts and pole. The detailed comparison with experimental data of the same models, tested in the large-scale wind tunnel of the Politecnico di Milano, suggests the very good predictive capability of the code in terms of power exchange, torque coefficient, and loads, on both time-mean and time-resolved basis. The peculiar formulation of the code allows including in a straightforward way the usual spanwise non-uniformity of the incoming wind and the effects of skew, thus allowing predicting the turbine operation in a realistic open-field in presence of the environmental boundary layer. A systematic study on the operation of VAWTs in multiple environments, such as in coastal regions or off-shore, and highlighting the sensitivity of VAWT performance to blade profile selection, rotor shape and size, wind shear, and rotor tilt concludes the paper.


Sign in / Sign up

Export Citation Format

Share Document