Energetic, exergetic and economic analysis and multi-objective optimization of two novel ammonia-water absorption combined power and cooling cycles driven by low-grade heat sources

2021 ◽  
Vol 248 ◽  
pp. 114781
Author(s):  
Chunyu Feng ◽  
Zeting Yu ◽  
Wenxing Liang ◽  
Daohang Wang
2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Gokmen Demirkaya ◽  
Saeb Besarati ◽  
Ricardo Vasquez Padilla ◽  
Antonio Ramos Archibold ◽  
D. Yogi Goswami ◽  
...  

Optimization of thermodynamic cycles is important for the efficient utilization of energy sources; indeed, it is more crucial for the cycles utilizing low-grade heat sources where the cycle efficiencies are smaller compared to high temperature power cycles. This paper presents the optimization of a combined power/cooling cycle, also known as the Goswami cycle, which combines the Rankine and absorption refrigeration cycles. The cycle uses a special binary fluid mixture as the working fluid and produces a power and refrigeration. In this regard, multi-objective genetic algorithms (GAs) are used for Pareto approach optimization of the thermodynamic cycle. The optimization study includes two cases. In the first case, the performance of the cycle is evaluated as it is used as a bottoming cycle and in the second case, as it is used as a top cycle utilizing solar energy or geothermal sources. The important thermodynamic objectives that have been considered in this work are, namely, work output, cooling capacity, effective first law, and exergy efficiencies. Optimization is carried out by varying the selected design variables, such as boiler temperature and pressure, rectifier temperature, and basic solution concentration. The boiler temperature is varied between 70–150 °C and 150–250 °C for the first and the second cases, respectively.


Author(s):  
M. Deligant ◽  
S. Braccio ◽  
T. Capurso ◽  
F. Fornarelli ◽  
M. Torresi ◽  
...  

Abstract The Organic Rankine Cycle (ORC) allows the conversion of low-grade heat sources into electricity. Although this technology is not new, the increase in energy demand and the need to reduce CO2 emissions create new opportunities to harvest low grade heat sources such as waste heat. Radial turbines have a simple construction, they are robust and they are not very sensitive to geometry inaccuracies. Most of the radial inflow turbines used for ORC application feature a vaned nozzle ensuring the appropriate distribution angle at the rotor inlet. In this work, no nozzle is considered but only the vaneless gap (distributor). This configuration, without any vaned nozzle, is supposed to be more flexible under varying operating conditions with respect to fixed vanes and to maintain a good efficiency at off-design. This paper presents a performance analysis carried out by means of two approaches: a combination of meanline loss models enhanced with real gas fluid properties and 3D CFD computations, taking into account the entire turbomachine including the scroll housing, the vaneless gap, the turbine wheel and the axial discharge pipe. A detailed analysis of the flow field through the turbomachine is carried out, both under design and off design conditions, with a particular focus on the entropy field in order to evaluate the loss distribution between the scroll housing, the vaneless gap and the turbine wheel.


Sign in / Sign up

Export Citation Format

Share Document