Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources

2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Gokmen Demirkaya ◽  
Saeb Besarati ◽  
Ricardo Vasquez Padilla ◽  
Antonio Ramos Archibold ◽  
D. Yogi Goswami ◽  
...  

Optimization of thermodynamic cycles is important for the efficient utilization of energy sources; indeed, it is more crucial for the cycles utilizing low-grade heat sources where the cycle efficiencies are smaller compared to high temperature power cycles. This paper presents the optimization of a combined power/cooling cycle, also known as the Goswami cycle, which combines the Rankine and absorption refrigeration cycles. The cycle uses a special binary fluid mixture as the working fluid and produces a power and refrigeration. In this regard, multi-objective genetic algorithms (GAs) are used for Pareto approach optimization of the thermodynamic cycle. The optimization study includes two cases. In the first case, the performance of the cycle is evaluated as it is used as a bottoming cycle and in the second case, as it is used as a top cycle utilizing solar energy or geothermal sources. The important thermodynamic objectives that have been considered in this work are, namely, work output, cooling capacity, effective first law, and exergy efficiencies. Optimization is carried out by varying the selected design variables, such as boiler temperature and pressure, rectifier temperature, and basic solution concentration. The boiler temperature is varied between 70–150 °C and 150–250 °C for the first and the second cases, respectively.

Author(s):  
Gokmen Demirkaya ◽  
Saeb M. Besarati ◽  
Ricardo Vasquez Padilla ◽  
Antonio Ramos Archibold ◽  
Muhammad M. Rahman ◽  
...  

Optimization of thermodynamic cycles is important for the efficient utilization of energy sources; indeed it is more crucial for the cycles utilizing low grade heat sources where the cycle efficiencies are smaller compared to high temperature power cycles. This paper presents the optimization of a combined power/cooling cycle, also known as the Goswami Cycle, which combines the Rankine and absorption refrigeration cycles. The cycle uses a special binary fluid mixture as the working fluid and produces power and refrigeration. In this regard, multi-objective genetic algorithms (GA) are used for Pareto approach optimization of the thermodynamic cycle. The optimization study includes two cases. In the first case the performance of the cycle is evaluated as it is used as a bottoming cycle, and in the second case as it is used as a top cycle utilizing solar energy or geothermal sources. The important thermodynamic objectives that have been considered in this work are, namely, work output, cooling capacity, effective first law and exergy efficiencies. Optimization is carried out by varying the selected design variables; boiler temperature and pressure, rectifier temperature, and basic solution concentration. The boiler temperature is varied between 70–150 °C and 150–250 °C for the first and the second cases, respectively.


Author(s):  
Chris Martin ◽  
D. Yogi Goswami

A novel combined power-cooling thermodynamic cycle, for use with low-temperature, sensible heat sources, is under experimental investigation. In this power-cooling cycle, absorption condensation is used to regenerate the working fluid. This allows the expander exhaust temperature to drop significantly below the temperature at which absorption is taking place. This is an obvious departure from pure working fluid, Rankine cycle operation and is the source of cooling. Expander exhaust temperatures are controlled by the cycle parameters of expander exit pressure (absorption pressure), expander isentropic efficiency, and the vapor properties (temperature, pressure, and concentration) at expander inlet. Experiments have been performed that show the power-cooling concept to be valid by measuring the expander exit-absorber temperature difference and they highlight the direction for future work.


2003 ◽  
Vol 125 (2) ◽  
pp. 212-217 ◽  
Author(s):  
Shaoguang Lu ◽  
D. Yogi Goswami

A novel combined power/refrigeration thermodynamic cycle is optimized for thermal performance in this paper. The cycle uses ammonia-water binary mixture as a working fluid and can be driven by various heat sources, such as solar, geothermal, and low temperature waste heat. The optimization program, which is based on the Generalized Reduced Gradient algorithm, can be used to optimize for different objective functions. In addition, cycle performance over a range of ambient temperatures was investigated.


2013 ◽  
Author(s):  
Menandro S. Berana ◽  
Edward T. Bermido

An ejector is a device with no moving components and is made up of four main parts: converging-diverging nozzle, suction chamber, mixing section and diffuser. It has become popular in refrigeration system as it gives the advantage of recovering expansion energy from high pressure difference into compression energy. In this study, the potential use of ejector in powerplants that use low-grade or low temperature heat sources was conceptualized and analytically investigated. A novel combination of the ejector and the organic Rankine cycle (ORC) was proposed. The driving fluid in the ejector of the proposed powerplant cycle is the high-pressure liquid in the separator that is just circulated back to the evaporator in the ORC. Further increase in turbine temperature drop (TTD), which can increase the power output and efficiency of the plant, can be achieved through expansion, mixing and recompression processes in the ejector. Ocean thermal energy conversion (OTEC), solar-boosted OTEC (SOTEC), solar-thermal, waste-heat driven, biomass and geothermal powerplants were considered in the analysis. Mathematical models in our previous studies were developed and used to calculate for nozzle and ejector parameters. The geometric profile of the ejector for optimization with categorized heat sources was determined. Isentropic, internally reversible, and irreversible two-phase nozzle expansions were analyzed. Two-phase flow calculations were continued in the mixing section. It was assumed that the constant-pressure mixing of the primary and secondary fluids occur at the hypothetical throat inside the constant-area section. Calculation for shock wave in the mixing section was also done. The diffuser was analyzed in a similar manner with the nozzle. Calculation for other components and plant efficiencies was finally conducted. Ammonia and propane which are both natural working fluids were used in the analysis. Evaporator temperature range from 293.15 K to 393.15 K and condenser and ambient temperatures range from 283.15 K to 308.15 K were used in the analysis. The lowest ambient temperature of 283.15 K was used for the OTEC and SOTEC powerplants. It was shown that ammonia and propane can operate up to 11 K and 12 K below the ambient temperature, respectively. Ejector efficiency ranged from 90 to 95% for both working fluids. The maximum efficiencies of the ejector powerplant were 19.2% for ammonia and 14.9% for propane, compared to 11.7% and 9.8% of the conventional ORC. It was analytically determined that the efficiency of the ejector powerplant is higher than that of the ORC powerplant for the same working fluid and conditions of the evaporator, condenser and the ambient.


2005 ◽  
Vol 127 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Sanjay Vijayaraghavan ◽  
D. Y. Goswami

A new thermodynamic cycle has been developed for the simultaneous production of power and cooling from low-temperature heat sources. The proposed cycle combines the Rankine and absorption refrigeration cycles, providing power and cooling as useful outputs. Initial studies were performed with an ammonia-water mixture as the working fluid in the cycle. This work extends the application of the cycle to working fluids consisting of organic fluid mixtures. Organic working fluids have been used successfully in geothermal power plants, as working fluids in Rankine cycles. An advantage of using organic working fluids is that the industry has experience with building turbines for these fluids. A commercially available optimization program has been used to maximize the thermodynamic performance of the cycle. The advantages and disadvantages of using organic fluid mixtures as opposed to an ammonia-water mixture are discussed. It is found that thermodynamic efficiencies achievable with organic fluid mixtures, under optimum conditions, are lower than those obtained with ammonia-water mixtures. Further, the refrigeration temperatures achievable using organic fluid mixtures are higher than those using ammonia-water mixtures.


Author(s):  
F. David Doty ◽  
Siddarth Shevgoor

Detailed thermodynamic and systems analyses show that a novel hybrid cycle, in which a low-grade (and low-cost) heat source (340 K to 460 K) provides the boiling enthalpy and some of the preheating while a mid-grade source (500 K to 800 K) provides the enthalpy for the final superheating, can achieve dramatic efficiency and cost advantages. Four of the more significant differences from prior bi-level cycles are that (1) only a single expander turbine (the most expensive component) is required, (2) condenser pressures are much higher, (3) the turbine inlet temperature (even with a low-grade geothermal source providing much of the energy) may be over 750 K, and (4) turbine size is reduced. The latent heat of vaporization of the working fluid and the differences in specific heats between the liquid and vapor phases make full optimization (approaching second-law limits) impossible with a single heat source. When two heat sources are utilized, this problem may be effectively solved — by essentially eliminating the pinch point. The final superheater temperature must also be increased, and novel methods have been investigated for increasing the allowable temperature limit of the working fluid by 200 to 350 K. The usable temperature limit of light alkanes may be dramatically increased by (1) accommodating hydrogen evolution from significant dehydrogenation; (2) periodically or continually removing undesired reaction products from the fluid; (3) minimizing the fraction of time the fluid spends at high temperatures. Detailed simulation results are presented for the case where (1) the low-grade heat source (such as geothermal) is 400 K and (2) the mid-grade Concentrated Solar Power (CSP) heat source is assumed to be 720 K. For an assumed condensing temperature of 305 K and working fluid flow rate of 100 kg/s, preliminary simulations give the following: (1) low-grade heat input is 25 MWT; (2) mid-grade heat input is 24 MWT; (3) the electrical output power is 13.5 MWE; and (4) the condenser rejection is only 35 MWT. For comparison, with a typical bi-level ORC generating similar power from this geothermal source alone, the low-grade heat requirement would be ∼100 MWT.


2018 ◽  
Vol 64 ◽  
pp. 06004 ◽  
Author(s):  
Iqbal Md Arbab ◽  
Rana Sohel ◽  
Ahmadi Mahdi ◽  
Close Thomas ◽  
Date Abhijit ◽  
...  

Despite the current energy crisis, a large amount of low grade heat (below 100oC) is being wasted for the lack of cost effective energy conversion technology. In the case of the conventional Organic Rankine Cycle (ORC) based geothermal power stations, only about 20% of available heat can be utilised due to a technological limitation as there is a phase change in the working fluid involved during the addition of heat which decreases utilisation effectiveness of the system. Therefore, in this paper, a trilateral flash cycle (TFC) based system has been studied to find out its prospect for utilizing more power from the same heat resources as the ORC. The TFC is a thermodynamic cycle that heats the working fluid as a saturated liquid from which it starts its expansion stage. The flash expansion is achieved by feeding the saturated high-pressured liquid working fluid through a convergent-divergent nozzle at which point it undergoes a flash expansion in the low-pressure environment of the generator housing. The momentum of the working fluid is extracted via a Pelton wheel and the cycle is completed with working fluid condensation and pressurisation. The analytical comparative study between the ORC and TFC based system shows that the TFC has about 50% more power generation capability and almost zero contribution on global warming.


2010 ◽  
Vol 35 (13) ◽  
pp. 1145-1157 ◽  
Author(s):  
Gokmen Demirkaya ◽  
Ricardo Vasquez Padilla ◽  
D. Yogi Goswami ◽  
Elias Stefanakos ◽  
Muhammad M. Rahman

Sign in / Sign up

Export Citation Format

Share Document