scholarly journals Review on the production and utilization of green ammonia as an alternate fuel in dual-fuel compression ignition engines

2022 ◽  
Vol 251 ◽  
pp. 114990
Author(s):  
Caneon Kurien ◽  
Mayank Mittal
2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881407
Author(s):  
Yasin Karagöz ◽  
Majid Mohammad Sadeghi

In this study, it was aimed to operate today’s compression ignition engines easily in dual-fuel mode with a developed electronic control unit. Especially, diesel engines with mechanical fuel system can be easily converted to common-rail fuel system with a developed electronic control unit. Also, with this developed electronic control unit, old technology compression ignition engines can be turned into dual-fuel mode easily. Thus, thanks to the flexibility of engine maps to be loaded into the electronic control unit, diesel engines can conveniently be operated with alternative gas fuels and diesel dual fuel. In particular, hydrogen, an alternative, environmentally friendly, and clean gas fuel, can easily be used with diesel engines by pilot spraying. Software and hardware development of electronic control unit are made, in order to operate a diesel engine with diesel+hydrogen dual fuel. Finally, developed electronic control unit was reviewed on 1500 r/min stable engine speed on different hydrogen energy rates (0%, 15%, 30%, and 45% hydrogen) according to thermic efficiency and emissions (CO, total unburned hydrocarbons, NOx, and smoke), and apart from NOx emissions, a significant improvement has been obtained. There was no increased NOx emission on 15% hydrogen working condition; however, on 45% hydrogen working condition, a dramatic increase arose.


Author(s):  
Eyko Medeiros Rios ◽  
Danielle Rodrigues de Moraes ◽  
Gisele Maria Ribeiro Vieira ◽  
Bárbara de Noronha Gonçalves ◽  
Ronney Arismel Mancebo Boloy

Fuel ◽  
2017 ◽  
Vol 197 ◽  
pp. 583-595 ◽  
Author(s):  
Shui Yu ◽  
Tongyang Gao ◽  
Meiping Wang ◽  
Liguang Li ◽  
Ming Zheng

Transport ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Maciej Mikulski ◽  
Sławomir Wierzbicki

Currently, one of the major trends in the research of contemporary combustion engines involves the potential use of alternative fuels. Considerable attention has been devoted to methane, which is the main component of Natural Gas (NG) and can also be obtained by purification of biogas. In compression-ignition engines fired with methane or Compressed Natural Gas (CNG), it is necessary to apply a dual-fuel feeding system. This paper presents the effect of the proportion of CNG in a fuel dose on the process of combustion. The recorded time series of pressure in a combustion chamber was used to determine the repeatability of the combustion process and the change of fuel compression-ignition delay in the combustion chamber. It has been showed that NG does not burn completely in a dual-fuel engine. The best conditions for combustion are ensured with higher concentrations of gaseous fuel. NG ignition does not take place simultaneously with diesel oil ignition. Moreover, if a divided dose of diesel is injected, NG ignition probably takes place at two points, as diesel oil.


Author(s):  
Michał Smieja ◽  
Sławomir Wierzbicki

Limited fossil fuel supplies and the necessary reduction in toxic fumes emission to the atmosphere are the main motives in conducting a search for the new, effective energy supplies. The one with potential is biogas. It is the product of natural fermentation processes of municipal waste in landfills or is produced in biogas plants out of agricultural and green waste. Due to creation under different conditions, its chemical composition varies. This is enormous obstacle in its effective application. Biogas is easily applied to fuel spark-ignition engines however intensive attempts are made to employ it in much more effective compression-ignition engines. Application of biogas require the use of dual-fuel CI engine. The point of the research described in this paper is to show the influence of different methanecarbon dioxide composition ratio in biogas on dual-fuel CI engine effectiveness.


Sign in / Sign up

Export Citation Format

Share Document