scholarly journals Analysis of radial-outflow turbine design for supercritical CO2 and comparison to radial-inflow turbines

2022 ◽  
Vol 252 ◽  
pp. 115089
Author(s):  
Aki Grönman ◽  
Antti Uusitalo
Author(s):  
Sebastian Bahamonde ◽  
Matteo Pini ◽  
Carlo De Servi ◽  
Antonio Rubino ◽  
Piero Colonna

Widespread adoption of renewable energy technologies will arguably benefit from the availability of economically viable distributed thermal power conversion systems. For this reason, considerable efforts have been dedicated in recent years to R&D over mini-organic Rankine cycle (ORC) power plants, thus with a power capacity approximately in the 3–50 kW range. The application of these systems for waste heat recovery from diesel engines of long-haul trucks stands out because of the possibility of achieving economy of production. Many technical challenges need to be solved, as the system must be sufficiently efficient, light, and compact. The design paradigm is therefore completely different from that of conventional stationary ORC power plants of much larger capacity. A high speed turbine is arguably the expander of choice, if high conversion efficiency is targeted, thus high maximum cycle temperature. Given the lack of knowledge on the design of these turbines, which depends on a large number of constraints, a novel optimal design method integrating the preliminary design of the thermodynamic cycle and that of the turbine has been developed. The method is applicable to radial inflow, axial and radial outflow turbines, and to superheated and supercritical cycle configurations. After a limited number of working fluids are selected, the feasible design space is explored by means of thermodynamic cycle design calculations integrated with a simplified turbine design procedure, whereby the isentropic expansion efficiency is prescribed. Starting from the resulting design space, optimal preliminary designs are obtained by combining cycle calculations with a 1D mean-line code, subject to constraints. The application of the procedure is illustrated for a test case: the design of turbines to be tested in a new experimental setup named organic rankine cycle hybrid integrated device (ORCHID) which is being constructed at the Delft University of Technology, Delft, The Netherlands. The first turbine selected for further design and construction employs siloxane MM (hexamethyldisiloxane, C6H18OSi2), supercritical cycle, and the radial inflow configuration. The main preliminary design specifications are power output equal to 11.6 kW, turbine inlet temperature equal to 300 °C, maximum cycle pressure equal to 19.9 bar, expansion ratio equal to 72, rotational speed equal to 90 krpm, inlet diameter equal to 75 mm, minimum blade height equal to 2 mm, degree of reaction equal to 0.44, and estimated total-to-static efficiency equal to 77.3%. Results of the design calculations are affected by considerable uncertainty related to the loss correlations employed for the preliminary turbine design, as they have not been validated yet for this highly unconventional supersonic and transonic mini turbine. Future work will be dedicated to the extension of the method to encompass the preliminary design of heat exchangers and the off-design operation of the system.


2017 ◽  
Vol 139 (8) ◽  
Author(s):  
Jianhui Qi ◽  
Thomas Reddell ◽  
Kan Qin ◽  
Kamel Hooman ◽  
Ingo H. J. Jahn

Supercritical CO2 (sCO2) cycles are considered as a promising technology for next generation concentrated solar thermal, waste heat recovery, and nuclear applications. Particularly at small scale, where radial inflow turbines can be employed, using sCO2 results in both system advantages and simplifications of the turbine design, leading to improved performance and cost reductions. This paper aims to provide new insight toward the design of radial turbines for operation with sCO2 in the 100–200 kW range. The quasi-one-dimensional mean-line design code topgen is enhanced to explore and map the radial turbine design space. This mapping process over a state space defined by head and flow coefficients allows the selection of an optimum turbine design, while balancing performance and geometrical constraints. By considering three operating points with varying power levels and rotor speeds, the effect of these on feasible design space and performance is explored. This provides new insight toward the key geometric features and operational constraints that limit the design space as well as scaling effects. Finally, review of the loss break-down of the designs elucidates the importance of the respective loss mechanisms. Similarly, it allows the identification of design directions that lead to improved performance. Overall, this work has shown that turbine design with efficiencies in the range of 78–82% is possible in this power range and provides insight into the design space that allows the selection of optimum designs.


Author(s):  
Jianhui Qi ◽  
Thomas Reddell ◽  
Kan Qin ◽  
Kamel Hooman ◽  
Ingo H. J. Jahn

Supercritical CO2 (sCO2) radial inflow turbine are an enabling technology for small scale concentrated solar thermal power. They are a research direction of the Australian Solar Thermal Research Initiative (ASTRI). This study uses the 1D meanline design code TOPGEN, to explore the radial turbine design space under consideration of sCO2 real gas properties. TOPGEN maps a parametric design space defined by flow and head coefficient. The preliminary design code is used explore the feasibility, geometry and performance of sCO2 turbines in the 100kW to 200kW range in order to assess feasible design spaces and to investigate turbine scaling. Turbines are scaled with respect to power, while maintaining specific speed constant and with respect to speed. This analysis shows that both scaling approaches change the feasible design space and that both geometric constraints such as blade height or operational constraints such as blade natural frequency can significantly limit the design space. Detailed analysis of four shortlisted designs shows that turbine efficiencies close to 85% can be attained for 100kW and 200kW output powers, even when operating at reduced rotor speeds. This work provides new insight towards the design of small scale radial turbines for operation with sCO2 and highlights scaling issues that may arise when testing sub-scale turbine prototypes.


Author(s):  
R. J. Allam ◽  
J. E. Fetvedt ◽  
B. A. Forrest ◽  
D. A. Freed

The Allam Cycle is a new, high-pressure, oxy-fuel, supercritical CO2 cycle that generates low-cost electricity from fossil fuels while producing near-zero air emissions; all CO2 generated by the system is produced as a high-pressure, pipeline-ready by-product for use in enhanced oil recovery, industrial processes, or sequestration. The base cycle was developed by 8 Rivers Capital and is being commercialized by NET Power, LLC in partnership with Toshiba Corporation, Exelon Corporation, and CB&I. The four parties are currently developing a natural gas-fired power plant to demonstrate this system. Target net efficiencies for the natural gas and coal versions of this cycle, based on current process modeling, are 59% and 52% (LHV) respectively, both with full carbon capture and no other air emissions. Detailed designs indicate that NET Power plants, with full carbon capture, will produce lower-cost electricity than state-of-the-art fossil fuel plants without CCS. 8 Rivers Capital continues to develop on top of the Allam Cycle platform. Building upon the original single turbine design, 8 Rivers has developed a two-turbine design that combines the benefits of the original, high-pressure Allam Cycle with a low-pressure reheat cycle. This new design can enable Allam Cycle-based plants to greatly increase power output with only a moderate increases in capital cost, substantially lowering the overall plant $/kW cost. Such a configuration would enable Allam Cycle plants to produce even lower-cost electricity than the single turbine Allam Cycle design currently being commercialized by NET Power, CB&I, Toshiba and Exelon. This paper outlines the design considerations utilized for the base Allam Cycle development and then details this new cycle design and its potential benefits.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
YH Tsai ◽  
TJ Hsieh ◽  
MC Liao ◽  
PJ Lien ◽  
CC Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document