The Oxy-Fuel, Supercritical CO2 Allam Cycle: New Cycle Developments to Produce Even Lower-Cost Electricity From Fossil Fuels Without Atmospheric Emissions

Author(s):  
R. J. Allam ◽  
J. E. Fetvedt ◽  
B. A. Forrest ◽  
D. A. Freed

The Allam Cycle is a new, high-pressure, oxy-fuel, supercritical CO2 cycle that generates low-cost electricity from fossil fuels while producing near-zero air emissions; all CO2 generated by the system is produced as a high-pressure, pipeline-ready by-product for use in enhanced oil recovery, industrial processes, or sequestration. The base cycle was developed by 8 Rivers Capital and is being commercialized by NET Power, LLC in partnership with Toshiba Corporation, Exelon Corporation, and CB&I. The four parties are currently developing a natural gas-fired power plant to demonstrate this system. Target net efficiencies for the natural gas and coal versions of this cycle, based on current process modeling, are 59% and 52% (LHV) respectively, both with full carbon capture and no other air emissions. Detailed designs indicate that NET Power plants, with full carbon capture, will produce lower-cost electricity than state-of-the-art fossil fuel plants without CCS. 8 Rivers Capital continues to develop on top of the Allam Cycle platform. Building upon the original single turbine design, 8 Rivers has developed a two-turbine design that combines the benefits of the original, high-pressure Allam Cycle with a low-pressure reheat cycle. This new design can enable Allam Cycle-based plants to greatly increase power output with only a moderate increases in capital cost, substantially lowering the overall plant $/kW cost. Such a configuration would enable Allam Cycle plants to produce even lower-cost electricity than the single turbine Allam Cycle design currently being commercialized by NET Power, CB&I, Toshiba and Exelon. This paper outlines the design considerations utilized for the base Allam Cycle development and then details this new cycle design and its potential benefits.

Author(s):  
Gurbakhash Bhander ◽  
Chun Wai Lee ◽  
Matthew Hakos

Abstract The growing worldwide interest in low carbon electric generation technologies has renewed interest in natural gas because it is considered a cleaner burning and more flexible alternative to other fossil fuels. Recent shale gas developments have increased natural gas production and availability while lowering cost, allowing a shift to natural gas for electricity production to be a cost-effective option. Natural gas generation in the U.S. electricity sector has grown substantially in recent years (over 31 percent in 2012, up from 17 percent in 1990), while carbon dioxide (CO2) emissions of the sector have generally declined. Natural gas-fired electrical generation offers several advantages over other fossil (e. g. coal, oil) fuel-fired generation. The combination of the lower carbon-to-hydrogen ratio in natural gas (compared to other fossil fuels) and the higher efficiency of natural gas combined cycle (NGCC) power plants (using two thermodynamic cycles) than traditional fossil-fueled electric power generation (using a single cycle) results in less CO2 emissions per unit of electricity produced. Furthermore, natural gas combustion results in considerably fewer emissions of air pollutants such as nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter (PM). Natural gas is not the main option for deep de-carbonization. If deep reduction is prioritized, whether of the electricity sector or of the entire economy, there are four primary technologies that would be assumed to play a prominent role: energy efficiency equipment, nuclear power, renewable energy, and carbon capture and storage (CCS). However, natural gas with low carbon generation technologies can be considered a “bridge” to transition to these deep decarbonization options. This paper discusses the economics and environmental impacts, focusing on greenhouse gas (GHG) emissions, associated with alternative electricity production options using natural gas as the fuel source. We also explore pairing NGCC with carbon capture, explicitly examining the costs and emissions of amine absorption, cryogenic carbon capture, carbonate fuel cells, and oxy-combustion.


Author(s):  
Farshid Zabihian ◽  
Darrel C. Gartin ◽  
Alan S. Fung

In this paper, research will be discussed on how to scientifically, systematically, and economically reduce greenhouse gas emissions within the state of West Virginia, USA. While fossil fuels such as coal and natural gas remain the top resources within this particular state, there are new technologies, different approaches and modifications to current power generation cycles, and different fuels that can be presented to gain further reduction of these harmful emissions. To achieve this objective, eight different scenarios were introduced. In the first scenario, existing power stations’ fuel was switched to natural gas. Existing power plants were replaced by natural gas combined cycle (NGCC), integrated gasification combined cycle (IGCC), solid oxide fuel cell (SOFC), hybrid SOFC, and SOFC-IGCC hybrid power stations in scenarios number 2 to 6, respectively. The last two scenarios involved carbon capture systems. It has been found that the CO2 emissions can be significantly reduced by introducing changes and alternatives to the current cycles and methods that are in place today.


2020 ◽  
Vol 54 (10) ◽  
pp. 6272-6280 ◽  
Author(s):  
Peter Psarras ◽  
Jiajun He ◽  
Hélène Pilorgé ◽  
Noah McQueen ◽  
Alexander Jensen-Fellows ◽  
...  

2019 ◽  
Vol 12 (7) ◽  
pp. 2161-2173 ◽  
Author(s):  
Rebecca L. Siegelman ◽  
Phillip J. Milner ◽  
Eugene J. Kim ◽  
Simon C. Weston ◽  
Jeffrey R. Long

As natural gas supplies a growing share of global primary energy, new research efforts are needed to develop adsorbents for carbon capture from gas-fired power plants alongside efforts targeting emissions from coal-fired plants.


2015 ◽  
Vol 1125 ◽  
pp. 312-316
Author(s):  
Kreangkrai Maneeintr ◽  
Pimon Iamareerat ◽  
Poomsup Manonukul ◽  
Suttichai Assabumrungrat ◽  
Tawatchai Charinpanitkul

For petroleum industries, CO2 can cause corrosion, and heating-value reduction. However, CO2 can be used to enhance the oil recovery for oil production. However, the amount of CO2 supply is not enough because the cost of carbon capture is high. The main sources of CO2 come from power generation. The technology to capture CO2 is carbon capture and storage or CCS. Currently, the effective technology to remove CO2 from the power plants is chemical absorption and chemicals used in this technology play a key role. Nowadays, the commercially used solvents are monoethanolamine (MEA). Nevertheless, it also has disadvantages such as low capacity and high energy requirement for regeneration thus making CCS costly. Therefore, many new solvents such as 2-(methylamino) ethanol or 2-MAE have been developed to improve efficiency and to reduce the cost of CO2 capture. Therefore, the objective of this work is to measure the solubility data of CO2 in a 5M aqueous solution of 2-MAE as a promising solvent at the temperature from 30 °C to 80 °C and CO2 partial pressures ranging from 5 to 100 kPa. The solubility results of CO2 in 2-MAE solution are compared with those of aqueous solution of MEA. In term of cyclic capacities, the results show that 2-MAE provides higher performance which is up to 86.8% and 150.9% higher than that of MEA at 15 and 100 kPa, respectively. Furthermore, the results present that the CO2 loading can increase as partial pressure increases and decrease at higher temperature. It can be concluded that an increase in cyclic capacity leads to the decrease in energy requirement for solution regeneration and liquid-circulation rate, leading to the reduction of the overall capital and operating costs and resulting in the decrease in cost of carbon capture.


Author(s):  
Nela Slavu ◽  
Cristian Dinca

Abstract One of the way to reduce the greenhouses gases emissions generated by the fossil fuels combustion consists in the Carbon Capture, Transport and Storage (CCS) technologies utilization. The integration of CCS technologies in the coal fired power plants increases the cost of the energy generation. The CCS technology could be a feasible solution in the case of a high value of a CO2 certificate but for the present value an optimization of the CCS technology integration in the power plants is expected. However, for reducing the cost of the energy generated in the case of CCS integration in the power plants, a parametrical study optimization of the CO2 capture process is required. In this study, the chemical absorption process was used and the monoethanolamine with 30 wt. %. The objective of this paper is to analyze the effects of the package type used in the absorption column on the size of the equipment used and, on the energy cost of the power plant with CO2 capture process consequently. The packages types analyzed in this paper are metal Pall rings with different sizes and the rings are made of different metals: aluminum, nickel, cooper, and brass. In the case of metal Pall rings, the utilization of different material has an impact on the absorption column weight. Also, Pall rings made of plastics (polypropylene and polyethylene) were analyzed. The comparative assessment was achieved for a coal fired power plant with an installed power of 100 MW and considering the CO2 capture process efficiency of 90 %.


2020 ◽  
Vol 24 (6 Part A) ◽  
pp. 3543-3553
Author(s):  
Pavel Charvat ◽  
Lubomir Klimes ◽  
Jiri Pospisil ◽  
Jiri Klemes ◽  
Petar Varbanov

The feasibility and consequences of replacing nuclear power plants (NPP) in the Czech Republic with other energy sources are discussed. The NPP produced about one-third of electricity in the Czech Republic in 2017. Renewable energy sources such as hydropower, wind and solar power plants and biomass/biogas burning power plants produced about 11% of electricity in 2017. Due to the geographical and other constraints (intermittency, land footprint, and public acceptance), the renewables do not have the potential to entirely replace the capacity of the NPP. The only feasible technologies that could replace NPP in the Czech Republic in the near future are the power plants using fossil fuels. The combined cycle power plants running on natural gas (NGCC) are technically and environmentally fea-sible alternative for NPP at the moment. However, the natural gas imports would increase by two-thirds and the total greenhouse gas emissions would go up by about 10% if the power production of the NPP was entirely replaced by NGCC in the Czech Republic.


Sign in / Sign up

Export Citation Format

Share Document