scholarly journals The impact of wind power generation on the electricity price in Germany

2014 ◽  
Vol 44 ◽  
pp. 270-280 ◽  
Author(s):  
Janina C. Ketterer
Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2442 ◽  
Author(s):  
Jussi Ekström ◽  
Matti Koivisto ◽  
Ilkka Mellin ◽  
Robert Millar ◽  
Matti Lehtonen

In future power systems, a large share of the energy will be generated with wind power plants (WPPs) and other renewable energy sources. With the increasing wind power penetration, the variability of the net generation in the system increases. Consequently, it is imperative to be able to assess and model the behavior of the WPP generation in detail. This paper presents an improved methodology for the detailed statistical modeling of wind power generation from multiple new WPPs without measurement data. A vector autoregressive based methodology, which can be applied to long-term Monte Carlo simulations of existing and new WPPs, is proposed. The proposed model improves the performance of the existing methodology and can more accurately analyze the temporal correlation structure of aggregated wind generation at the system level. This enables the model to assess the impact of new WPPs on the wind power ramp rates in a power system. To evaluate the performance of the proposed methodology, it is verified against hourly wind speed measurements from six locations in Finland and the aggregated wind power generation from Finland in 2015. Furthermore, a case study analyzing the impact of the geographical distribution of WPPs on wind power ramps is included.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6532
Author(s):  
Vahab Rostampour ◽  
Thom S. Badings ◽  
Jacquelien M. A. Scherpen

We present a Buildings-to-Grid (BtG) integration framework with intermittent wind-power generation and demand flexibility management provided by buildings. First, we extend the existing BtG models by introducing uncertain wind-power generation and reformulating the interactions between the Transmission System Operator (TSO), Distribution System Operators (DSO), and buildings. We then develop a unified BtG control framework to deal with forecast errors in the wind power, by considering ancillary services from both reserves and demand-side flexibility. The resulting framework is formulated as a finite-horizon stochastic model predictive control (MPC) problem, which is generally hard to solve due to the unknown distribution of the wind-power generation. To overcome this limitation, we present a tractable robust reformulation, together with probabilistic feasibility guarantees. We demonstrate that the proposed demand flexibility management can substitute the traditional reserve scheduling services in power systems with high levels of uncertain generation. Moreover, we show that this change does not jeopardize the stability of the grid or violate thermal comfort constraints of buildings. We finally provide a large-scale Monte Carlo simulation study to confirm the impact of achievements.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6270
Author(s):  
Jianqiang Luo ◽  
Siqi Bu ◽  
Jiebei Zhu

Previous studies generally consider that the full converter-based wind power generation (FCWG) is a “decoupled” power source from the grid, which hardly participates in electromechanical oscillations. However, it was found recently that strong interaction could be induced which might incur severe resonance incidents in the electromechanical dynamic timescale. In this paper, the participation of FCWG in electromechanical dynamics is extensively investigated, and particularly, an unusual transition of the electromechanical oscillation mode (EOM) is uncovered for the first time. The detailed mathematical models of the open-loop and closed-loop power systems are firstly established, and modal analysis is employed to quantify the FCWG participation in electromechanical dynamics, with two new mode identification criteria, i.e., FCWG dynamics correlation ratio (FDCR) and quasi-electromechanical loop correlation ratio (QELCR). On this basis, the impact of different wind penetration levels and controller parameter settings on the participation of FCWG is investigated. It is revealed that if an FCWG oscillation mode (FOM) has a similar oscillation frequency to the system EOMs, there is a high possibility to induce strong interactions between FCWG dynamics and system electromechanical dynamics of the external power systems. In this circumstance, an interesting phenomenon may occur that an EOM may be dominated by FCWG dynamics, and hence is transformed into a quasi-EOM, which actively involves the participation of FCWG quasi-electromechanical state variables.


2022 ◽  
Vol 7 ◽  
pp. 9
Author(s):  
Seyed Amir Kaboli ◽  
Reyhaneh Nazmabadi

There continues to be significant attention and investment in wind power generation, which can supply a high percentage of the global demand for renewable energy if harvested efficiently. The research study is based on techno-economic analysis of the feasibility of implementing wind power generation in Kuwait with a power generation capacity of 105 MW based on 50 wind turbines, which has a major requirement for clean energy. The study focused on three main areas of analysis and numerical modeling using the RETScreen software tool. The first area involved evaluating the performance and efficacy of generating wind power by collecting, analyzing, and modeling data on observed wind levels, wind turbine operation, and wind power generation. The second area comprised an environmental impact review to assess the environmental benefits of implementing wind power. The third area involved economic analysis of installing wind power in Kuwait. The analysis was undertaken to assess the energy recovery time for wind energy and determine the mitigation of global warming and pollution levels, the decrease of toxic emissions, and any cost savings from implementing clean energy systems in Kuwait. Additionally, sensitivity analysis was undertaken to determine the impact of certain variables in the modeling process. The results are used to estimate that the energy price would be $0.053 per kWh for a power generation capacity of 105 MWh based on an initial cost of $168 million and O&M of $5 million for 214,000 MWh of electricity exported to the grid. Moreover, the wind turbine farm will potentially avoid the emission of approximately 1.8 million tonnes of carbon dioxide per year, thereby saving approximately $9 million over 20 years spent installing carbon capture systems for conventional power plants. The wind farm containing a simple wind turbine is estimated to have a payback period of 9.1 years.


Author(s):  
Jianqiang Luo ◽  
Siqi Bu

Previous studies generally reckon that the full converter-base wind power generation (FCWG) is a ’decoupled’ power source from the grid, which hardly participates in electromechanical oscillations. However, it is found recently that strong interaction could be induced which might incur severe resonance incidents in electromechanical dynamic timescale. In this paper, the participation of FCWG in electromechanical dynamics is extensively investigated, and particularly, an unusual transition of electromechanical oscillation mode (EOM) is uncovered for the first time. The detailed mathematical models of open-loop and closed-loop power systems are firstly established, and modal analysis is employed to quantify the FCWG participation in electromechanical dynamics, with two new mode identification criteria, i.e., FCWG dynamics correlation ratio (FDCR) and quasi-electromechanical loop correlation ratio (QELCR). On this basis, the impact of different wind penetration levels and controller parameter settings on the participation of FCWG is investigated. It is revealed that if an FOM has a similar oscillation frequency to the system EOMs, there is a high possibility to induce strong interactions between FCWG dynamics and system electromechanical dynamics of the external power systems. In this circumstance, an interesting phenomenon may occur that an EOM may be dominated by FCWG dynamics, and hence is transformed into a quasi-EOM, which actively involves the participation of FCWG quasi-electromechanical state variables.


2013 ◽  
Vol 823 ◽  
pp. 550-554
Author(s):  
Miao Wang ◽  
Zhong Dong Yin

Intermittent and volatility of wind energy makes wind power generation output power characterized by its instability make adverse impact on grid power quality , will give a rise to serious problems of voltage fluctuation and flicker. It is very important to calculate the flicker emission when analysis the power quality. However, flicker level is hard to predict and the way given by IEC61400-21 has been verified to be lack of accuracy. This paper analyzes a constant speed wind turbines caused grid voltage fluctuation and flicker on the mechanism. Illustrates the two way to measure flickers caused by voltage fluctuation. Improves the on-site calculation of flicker by considering the impact of tower shadow and wind shear. Finally, verified the feasibility of the improved methodology by comparing the results of the three calculation.


2011 ◽  
Vol 71-78 ◽  
pp. 3529-3534
Author(s):  
Yan Li ◽  
Wen Biao Liang ◽  
Er Gang Xiong ◽  
Jun Hai Zhao

To promote the enterprise of wind power generation, optimize the structure of wind power tower and improve the generating efficiency, a mini-type timberwork wind power generation tower model was designed and fabricated. Based on the tests by the leeward loading scheme, static characteristics and dynamic characteristics of the model were analyzed by numerical simulation. The results calculated through the finite element simulation were in a reasonable agreement with the test results. Additionally, considering the impact of different load levels, the bearing capacity, stiffness and the dynamic behavior can meet the requirements, which has significant reference value on practical application.


2010 ◽  
Vol 1 (3) ◽  
pp. 295-301 ◽  
Author(s):  
Miguel A. Ortega-Vazquez ◽  
Daniel S. Kirschen

Sign in / Sign up

Export Citation Format

Share Document