scholarly journals Techno-economic analysis and modelling of the feasibility of wind energy in Kuwait

2022 ◽  
Vol 7 ◽  
pp. 9
Author(s):  
Seyed Amir Kaboli ◽  
Reyhaneh Nazmabadi

There continues to be significant attention and investment in wind power generation, which can supply a high percentage of the global demand for renewable energy if harvested efficiently. The research study is based on techno-economic analysis of the feasibility of implementing wind power generation in Kuwait with a power generation capacity of 105 MW based on 50 wind turbines, which has a major requirement for clean energy. The study focused on three main areas of analysis and numerical modeling using the RETScreen software tool. The first area involved evaluating the performance and efficacy of generating wind power by collecting, analyzing, and modeling data on observed wind levels, wind turbine operation, and wind power generation. The second area comprised an environmental impact review to assess the environmental benefits of implementing wind power. The third area involved economic analysis of installing wind power in Kuwait. The analysis was undertaken to assess the energy recovery time for wind energy and determine the mitigation of global warming and pollution levels, the decrease of toxic emissions, and any cost savings from implementing clean energy systems in Kuwait. Additionally, sensitivity analysis was undertaken to determine the impact of certain variables in the modeling process. The results are used to estimate that the energy price would be $0.053 per kWh for a power generation capacity of 105 MWh based on an initial cost of $168 million and O&M of $5 million for 214,000 MWh of electricity exported to the grid. Moreover, the wind turbine farm will potentially avoid the emission of approximately 1.8 million tonnes of carbon dioxide per year, thereby saving approximately $9 million over 20 years spent installing carbon capture systems for conventional power plants. The wind farm containing a simple wind turbine is estimated to have a payback period of 9.1 years.

2022 ◽  
Vol 4 (1) ◽  
pp. 14-34
Author(s):  
Ali M. H. A. Khajah ◽  
Simon P. Philbin

There continues to be significant attention and investment in wind power generation, which can supply a high percentage of the global demand for renewable energy if harvested efficiently. The research study is based on a techno-economic analysis of the feasibility of implementing wind power generation in Kuwait for 105 MW of electricity generation based on 50 wind turbines, which is a major requirement for clean energy. The study focused on three main areas of analysis and numerical modelling using the RETScreen software tool. The first area involved evaluating the performance and efficacy of generating wind power by collecting, analysing, and modelling data on observed wind levels, wind turbine operation, and wind power generation. The second area comprised an environmental impact report to assess the environmental benefits of implementing wind power. The third area involved economic analysis of installing wind power in Kuwait. The analysis was undertaken to determine the energy recovery time for wind energy and determine the mitigation of global warming and pollution levels, the decrease of toxic emissions, and any cost savings from implementing clean energy systems in Kuwait. Additionally, sensitivity analysis was undertaken to determine the impact of certain variables in the modelling process. The results were used to estimate that the energy price would be $0.053 per kWh for a power generation capacity of 105 MWh based on an initial cost of US $168 million and O&M of $5 million for 214,000 MWh of electricity exported to the grid. Moreover, the wind turbine farm will potentially avoid the emission of approximately 1.8 million t of carbon dioxide per year, thereby saving about $9 million over 20 years spent through installing carbon capture systems for conventional power plants. The wind farm is estimated to have a payback time of 9.1 years.


2014 ◽  
Vol 25 (4) ◽  
pp. 11-22 ◽  
Author(s):  
Mustafa Arif Özgür

Wind energy is one of the most significant and rapidly developing renewable energy sources in the world and it provides a clean energy resource, which is a promising alternative in the short term in Turkey. The wind energy potential in various parts of Turkey is becoming economical due to reductions in wind turbine costs, and in fossil fuel atmospheric pollution. This paper is to present, in brief, wind potential in Turkey and to perform an investigation on the wind energy potential of the Kutahya region. A wind measurement station was established at Dumlupinar University Main Campus in order to figure out the wind energy potential in the province. This study analyses the electricity generation capacity of the Kutahya region, Turkey, which uses the wind power system. In the study, the wind data collected from wind measurement stations between July 2001 and June 2004 (36 months) were evaluated to determine the energy potential of the region. Using this energy potential value, the power generation capacity of Kutahya was investigated for 17 different wind turbines. In this analysis, an ANN-based model and Weibull and Rayleigh distribution models were used to determine the power generation. In the ANN model, different feed-forward back propagation learning algorithms, namely Pola-Ribiere Conjugate Gradient, Levenberg–Marquardt and Scaled Conjugate Gradient were applied. The best appropriate model was determined as Levenberg–Marquardt with 15 neurons in a single hidden layer. Using the best ANN topology, it was determined that all the turbines were profitable except turbine type 1. The system with the turbine type 3 was decisively the most profitable case as determined at the end of the study according to Net Present Value  concept.


Author(s):  
Dr. R. C. Bansal ◽  
Dr. Ahmed F Zobaa ◽  
Dr. R. K. Saket

Design and successful operation of wind energy conversion systems (WECs) is a very complex task and requires the skills of many interdisciplinary skills, e.g., civil, mechanical, electrical and electronics, geography, aerospace, environmental etc. Performance of WECs depends upon subsystems like wind turbine (aerodynamic), gears (mechanical), generator (electrical); whereas the availability of wind resources are governed by the climatic conditions of the region concerned for which wind survey is extremely important to exploit wind energy. This paper presents a number of issues related to the power generation from WECs e.g. factors affecting wind power, their classification, choice of generators, main design considerations in wind turbine design, problems related with grid connections, wind-diesel autonomous hybrid power systems, reactive power control of wind system, environmental aspects of power generation, economics of wind power generation, and latest trend of wind power generation from off shore sites.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 994 ◽  
Author(s):  
Chunyou Zhang ◽  
Liang Wang ◽  
Hong Li

Many oil fields are full of wind energy. At present, wind power generation technology has catered to oil fields. A larger wind turbine is used to supply power to several pumping units. As a result of the structural characteristics of the pumping unit, the efficiency of the electromotor is very low, which leads to a reduction in the utilization rate of wind energy. At the same time, considering the high cost of large wind turbines, the energy saving effect is not obvious in practical applications. This paper proposes an energy supply model of a pumping unit driven by a small wind turbine and a new wind-motor hybrid structure. Instead of wind power generation technology, wind energy drives the pumping unit directly via a mechanical–hydraulic transmission system. This new mechanical-hydraulic system can optimize the power confluence of wind and electric power. To enhance the efficiency of the motor, a mathematical model and a test station were established. The correctness of the energy conservation method and the mathematical model was verified, and the performance of the wind-motor system was studied.


2021 ◽  
Vol 19 ◽  
pp. 289-296
Author(s):  
Wei Yang ◽  
Yi Chai ◽  
Jie Zheng ◽  
Jie Liu

The seriousness of air pollution appears to be the importance of wind energy as a non-polluting energy source. Today, the use of wind power has become a trend for new countries to develop new energy sources. Wind turbines are the key equipment for converting wind energy into electrical energy, the quality of the state directly affects the efficiency of wind power generation. Therefore, how to effectively diagnose the wind turbine drive system is the guarantee of wind power generation. This paper establishes a fault diagnosis method for wind turbine drive based on vibration characteristics, by wavelet packet decomposition of vibration signals. The feature extraction is carried out and back propagation neural network is used for classification research. Finally, the simulation results show that the recognition rate is over 90%, which verify effectiveness of the proposed method.


2018 ◽  
Vol 175 ◽  
pp. 03004
Author(s):  
Zhang Mingsheng ◽  
Wu Hesong ◽  
Wan Wenkui ◽  
Feng Peilei

With the rapid development of the global economy, wind power generation has attracted wide attention all over the world. With the rapid development of all kinds of new energy in the world, wind power generation has a huge international market and broad prospects for development. Based on the actual situation of the local wind power generation project in a city, this paper analyses the feasibility of the wind power generation system in the local area. According to the type selection and arrangement of various types of wind motors, a reasonable electrical wiring part is designed. The research shows that wind power is of high comprehensive value. Wind power plants can be built in areas with suitable geographical conditions and sufficient wind energy. After the completion of the above power generation projects, the advantage of local wind energy resources will be fundamentally changed into economic advantage.


Author(s):  
Guruswamy Revana ◽  
Amrutha D.E ◽  
Spandana D ◽  
Anusha D

Wind power is a domestic source of energy, harnessing a limitless local resource and is a potential source of clean electricity generation. Wind is utilized to create electrical energy by means of the kinetic energy formed by air into movement. This energy is changed to electrical energy by wind speed turbines or also called as wind energy exchange systems. Wind speed power generation creates a progressively more significant position in the method the humans power the world. During the process of wind power generation, a variety of characteristics are to be controlled for efficient working of the system and to avoid failure of continuous power supply. In this project we are aiming to control a few such characteristic such as pitch angle, voltage sag and faults that influence wind power generation. The DC link voltage of the Doubly Fed Induction Generator (DFIG) is also monitored. In this wind turbine system consists of wind turbine, AC generator and controllers are considered. The major purpose of the paper is to find out the mathematical model of the wind turbine, authenticate it by simulation, and devise a suitable controller to present a common aim of outlook regarding the use of this type of clean energy production. Various rudiments are connected collectively and the complete arrangement is modelled and also simulated. The simulation results verify the accuracy of the mathematical models developed and can be utilized for a improved design of systems. Wind turbines make use DFIG which consists of wound rotor type induction generator and a PWM converter of IGBT bases of AC/DC/AC. The stator winding is connected directly to the 60 Hz grid while the rotor is fed at variable frequency through the AC/DC/AC converter. The DFIG machinery permits pulling out highest energy from the wind from lowest wind speeds and optimizing the speed of the turbine there by decreasing mechanical stresses on the turbine during gusts of wind. The most favourable turbine speed producing increased mechanical energy for a given speed of the wind which is directly proportional to the wind speed. The other merit of the DFIG expertise is the capability for the converters of power electronics to produce or take in reactive power, thereby reducing the need for putting in capacitor banks as done for the generators of squirrel-cage induction motor type.


Author(s):  
Y. S. Petrusha ◽  
N. A. Papkova

The use of wind turbines to create wind energy is one of the main alternatives to the traditional technologies of power generation. The exclusion of combustion products emissions at thermal power plants that operate on hydrocarbon fuel, as well as the exclusion of the fuel component of the cost of electricity generation makes the wind power technology very attractive. However, the rigor of the operation requirements of wind turbines as part of power systems, low density of the flow of primary energy source and the lack of control of it, low utilization of installed capacity, limited operating life, shutdowns in the conditions of squally gusts of wind and ice formation, large areas of alienated land, the impact of noise and infrasonic vibrations and the problems of utilization of large-size structural elements and foundations require a comprehensive analysis of conditions of wind turbines application. Despite the absence of desert areas and of restrictions on the construction of ultra-high structures the analysis of natural and climatic conditions of Belarus demonstrates favorable natural and landscape conditions for the development of wind power generation. The principal task is to choose the location of wind power plants with due regard to environmental requirements, temperature and humidity conditions, terrain and geological features of the location. The results of calculations of the wind flow conditions showed the preference for the joint application of the Weibull and Rayleigh functions that provide the confidence interval of the approximation of the wind speed function, while the terrain specific features make it possible to expect to obtain higher values of the established capacity utilization factor. The development of a distributed energy generation accompanied by Smart Grid technology wide use over electric networks (which would provide new opportunities for consumers and make it possible to eliminate the monopoly of powerful power plants and to reduce burden of basic costs of big power production) ought to be considered as obvious prospect of wind power plants application.


Author(s):  
Vаsіly Kоrdоnsky

There are many advantages of wind energy, including energy, environmental, economic. Relatively low investment in wind energy projects compared to traditional energy industries. The total kinetic energy of wind in the world can be estimated as 80 times higher than the total energy consumption by humans. And although only a certain fraction of this total can be used for energy needs, the future. The development of the technology itself has enormous potential. The article introduces and provides a brief analysis and historical background of existing designs of low-power wind power plants of the world's major manufacturers; the purpose of research on the proposed topic is indicated. Proposed and developed and described a promising scheme of a wind farm for the needs of small agricultural facilities, which makes it possible to receive electric current at low wind speeds in all natural and climatic zones of Ukraine. It has been established that low-power wind power plants are one of the promising areas for obtaining electrical energy and meeting the needs for small agricultural facilities. The proposed scheme for generating electrical energy. This design of a wind turbine can produce both DC and AC power for stand-alone or grid systems. The calculation of the wind turbine rotor diameter has been reduced. The advantages and disadvantages of wind energy in comparison with traditional energy industries are described. Brief conclusions are made on the proposed design of the wind farm, this will improve the environment, reducing the impact of anthropogenic factors on the environment and also, taking into account the constant increase in energy prices, save money, since such independent small wind farms allow small agricultural facilities to be provided with energy sources.


Author(s):  
Michael S Okundamiya

The rising demands for a sustainable energy system have stimulated global interests in renewable energy sources. Wind is the fastest growing and promising source of renewable power generation globally. The inclusion of wind power into the electric grid can severely impact the monetary cost, stability and quality of the grid network due to the erratic nature of wind. Power electronics technology can enable optimum performance of the wind power generation system, transferring suitable and applicable energy to the electricity grid. Power electronics can be used for smooth transfer of wind energy to electricity grid but the technology for wind turbines is influenced by the type of generator employed, the energy demand and the grid requirements. This paper investigates the constraints and standards of wind energy conversion technology and the enabling power electronic technology for integration to electricity grid.


Sign in / Sign up

Export Citation Format

Share Document