Evaluation of a new computational fluid dynamics model for internal combustion engines using hydrogen under motoring conditions

Energy ◽  
2009 ◽  
Vol 34 (12) ◽  
pp. 2158-2166 ◽  
Author(s):  
C.D. Rakopoulos ◽  
G.M. Kosmadakis ◽  
E.G. Pariotis
2020 ◽  
pp. 146808742091638
Author(s):  
Jann Koch ◽  
Christian Schürch ◽  
Yuri M Wright ◽  
Konstantinos Boulouchos

The effects of hydrogen addition to internal combustion engines operated by natural gas/methane has been widely demonstrated experimentally in the literature. Already small hydrogen contents in the fuel show promising benefits with respect to increased engine efficiency, lower CO2 emissions, extended lean operating limits and a higher exhaust gas recirculation tolerance while maintaining the knock resistance of methane. In this article, the influence of hydrogen addition to methane on a spark ignited single cylinder engine is investigated. This article proposes a modelling approach to consider hydrogen addition within three-dimensional reactive computational fluid dynamics in order to establish a framework to gain further insights into the involved processes. Experiments have been performed on a single-cylinder spark-ignition engine situated at a test bed and cater as reference data for validating the proposed reactive computational fluid dynamics modelling approach based around the G-Equation combustion model. Within the course of the first part, crucial aspects relevant to the modelling of the mean engine cycle are highlighted. In this article, a simplified early combustion phase model which considers the transition towards a fully developed turbulent flame following ignition is introduced, along with a second submodel considering combined effects of the walls. The sensitivity of the combustion process towards the modelling approach is presented. The submodels were calibrated for a reference operating point, and a sweep in hydrogen content in the fuel as well as stoichiometric and lean operation has been considered. It is shown that the flame speed coefficient A appearing in the used turbulent flame speed closure, weighting the influence of the turbulent fluctuating speed [Formula: see text], has to be adjusted for different hydrogen contents. The introduced submodels allowed for significant improvement of the in-cylinder pressure and heat release rate evolution throughout all considered operating conditions.


2018 ◽  
Vol 20 (4) ◽  
pp. 393-404 ◽  
Author(s):  
José Galindo ◽  
Roberto Navarro ◽  
Luis Miguel García-Cuevas ◽  
Daniel Tarí ◽  
Hadi Tartoussi ◽  
...  

Zero-dimensional/one-dimensional computational fluid dynamics codes are used to simulate the performance of complete internal combustion engines. In such codes, the operation of a turbocharger compressor is usually addressed employing its performance map. However, simulation of engine transients may drive the compressor to work at operating conditions outside the region provided by the manufacturer map. Therefore, a method is required to extrapolate the performance map to extended off-design conditions. This work examines several extrapolating methods at the different off-design regions, namely, low-pressure ratio zone, low-speed zone and high-speed zone. The accuracy of the methods is assessed with the aid of compressor extreme off-design measurements. In this way, the best method is selected for each region and the manufacturer map is used in design conditions, resulting in a zonal extrapolating approach aiming to preserve accuracy. The transitions between extrapolated zones are corrected, avoiding discontinuities and instabilities.


2017 ◽  
Vol 142 ◽  
pp. 166-171 ◽  
Author(s):  
Ding Lu ◽  
Kunio Yoshikawa ◽  
Tamer M. Ismail ◽  
M. Abd El-Salam

2021 ◽  
Vol 2021 (6) ◽  
pp. 5421-5425
Author(s):  
MICHAL RICHTAR ◽  
◽  
PETRA MUCKOVA ◽  
JAN FAMFULIK ◽  
JAKUB SMIRAUS ◽  
...  

The aim of the article is to present the possibilities of application of computational fluid dynamics (CFD) to modelling of air flow in combustion engine intake manifold depending on airbox configuration. The non-stationary flow occurs in internal combustion engines. This is a specific type of flow characterized by the fact that the variables depend not only on the position but also on the time. The intake manifold dimension and geometry strongly effects intake air amount. The basic target goal is to investigate how the intake trumpet position in the airbox impacts the filling of the combustion chamber. Furthermore, the effect of different distances between the trumpet neck and the airbox wall in this paper will be compared.


Sign in / Sign up

Export Citation Format

Share Document