Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization

Energy ◽  
2012 ◽  
Vol 39 (1) ◽  
pp. 236-245 ◽  
Author(s):  
Chien-Chang Wang ◽  
Chen-I Hung ◽  
Wei-Hsin Chen
2018 ◽  
Vol 225 ◽  
pp. 02019
Author(s):  
Ali Elghool ◽  
M.F. Naeem ◽  
Firdaus Basrawi ◽  
Hassan Ibrahim ◽  
DMND Idris ◽  
...  

There are needs on electricity but people cannot get electricity including when doing outdoor activities at isolated areas, selling goods in night market and during disaster such as flood and earthquake. People need electricity especially for charging communication gadgets and lighting. Thus, the objective of this study is to develope and test the performance of a small prototype of thermoelectric generator (TEG) based power generation system. The TEG based power generation system developed consists of heat collector, thermoelectric generator, heat pipe and fin based heat sink, and DC-DC converter. The heat collector was designed to ensure the suitable temperature for the TEG which is should not exceed 320°C on the hot side. Heat pipes was used to increase the power output by lowering or maintaining the temperature at cold side, to ensure large temperature difference is obtained. The prototype was tested and data of temperature, voltage and current were collected. A cell phone was used during the test as a load to the system. All the data were recorded by using temperature data recorder, power meter and multimeter. It was found that the highest maximum power output was 7.7 watt at the temperature difference of 138°C. The output is sufficient to charge the cell phone and it is also possible to light an LED bulb. However, it did not achieve the maximum output of 43 W. This is a results of limitation of maximum electrical load (only one cell phone was used) and the limitation of the performance of the prototype. Thus, although the prototype is succesfully generate enough power to charge a cell phone, but improvement in heat sink design, and adding more electrical load are needed to get better results.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 43602-43611 ◽  
Author(s):  
Yaoguang Shi ◽  
Yancheng Wang ◽  
Deqing Mei ◽  
Zichen Chen

2013 ◽  
Vol 365-366 ◽  
pp. 285-288
Author(s):  
Sheng Li ◽  
Qing Hui Zeng ◽  
Xin Hua Yao ◽  
Jian Zhong Fu

Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical, civil, and aerospace engineering systems. Typically, the waste heat from spindle units of machine tools creates obvious potential for thermoelectric generation. The structure of heat sinks on a thermoelectric generator has a great effect on the output voltage of the thermoelectric generator due to the temperature difference between hot and cold sides induced by heat transfer, so several typical structures of heat sinks are studied under different rotation speed of the spindle. According to the simulation study, the thermal resistance of heat sinks was presented. In the experiment, the output voltages of a thermoelectric generator were measured under different rotation speed with different structures of heat sinks. Experiment and simulation shows that the two pipes structure of the heat sink can help the generator to produce more power.


Sign in / Sign up

Export Citation Format

Share Document