scholarly journals Environomic optimal configurations of geothermal energy conversion systems: Application to the future construction of Enhanced Geothermal Systems in Switzerland

Energy ◽  
2012 ◽  
Vol 45 (1) ◽  
pp. 908-923 ◽  
Author(s):  
Léda Gerber ◽  
François Maréchal
2021 ◽  
Author(s):  
Ziyang Zhou ◽  
Hitoshi MIKADA ◽  
Junichi TAKEKAWA ◽  
Shibo Xu

Abstract With the increasing attention to clean and economical energy resources, geothermal energy and enhanced geothermal systems (EGS) have gained much importance. For the efficient development of deep geothermal reservoirs, it is crucial to understand the mechanical behavior of reservoir rock and its interaction with injected fluid under high temperature and high confining pressure environments. In the present study, we develop a novel numerical scheme based on the distinct element method (DEM) to simulate the failure behavior of rock by considering the influence of thermal stress cracks and high confining pressure for EGS. We validated the proposing method by comparing our numerical results with experimental laboratory results of uniaxial compression tests under various temperatures and biaxial compression tests under different confining pressure regarding failure patterns and stress-strain curves. We then apply the developed scheme to the hydraulic fracturing simulations under various temperatures, confining pressure, and injection fluid conditions. Our numerical results indicate that the number of hydraulic cracks is proportional to the temperature. At a high temperature and low confining pressure environment, a complex crack network with large crack width can be observed, whereas the generation of the micro cracks is suppressed in high confining pressure conditions. In addition, high-viscosity injection fluid tends to induce more hydraulic fractures. Since the fracture network in the geothermal reservoir is an essential factor for the efficient production of geothermal energy, the combination of the above factors should be considered in hydraulic fracturing treatment in EGS.


2020 ◽  
Author(s):  
Johannes Herrmann ◽  
Erik Rybacki ◽  
Wenxia Wang ◽  
Harald Milsch ◽  
Bianca Wagner ◽  
...  

<p>Commonly used host rock reservoirs for Enhanced Geothermal Systems (EGS) are composed of granite, as they display highly conductive and sustainable fracture networks after stimulation. However, considering the large amount of metamorphic rocks in Europe’s underground, these rock types may also show a large potential to extract geothermal energy from the subsurface. Within the framework of the European Union’s Horizon 2020 initiative ‘MEET (Multi-Sites EGS Demonstration)’, we are conducting fracture permeability experiments at elevated confining pressures, p<sub>c</sub>, temperatures, T, and differential stresses, </p>


2021 ◽  
Vol 143 (10) ◽  
Author(s):  
Susan G. Hamm ◽  
Arlene Anderson ◽  
Douglas Blankenship ◽  
Lauren W. Boyd ◽  
Elizabeth A. Brown ◽  
...  

Abstract Geothermal energy can provide answers to many of America’s essential energy questions. The United States has tremendous geothermal resources, as illustrated by the results of the DOE GeoVision analysis, but technical and non-technical barriers have historically stood in the way of widespread deployment of geothermal energy. The U.S. Department of Energy’s Geothermal Technologies Office within the Office of Energy Efficiency and Renewable Energy has invested more than $470 million in research and development (R&D) since 2015 to meet its three strategic goals: (1) unlock the potential of enhanced geothermal systems, (2) advance technologies to increase geothermal energy on the U.S. electricity grid, and (3) support R&D to expand geothermal energy opportunities throughout the United States. This paper describes many of those R&D initiatives and outlines future directions in geothermal research.


Sign in / Sign up

Export Citation Format

Share Document