Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks

Energy ◽  
2013 ◽  
Vol 52 ◽  
pp. 333-338 ◽  
Author(s):  
Benyamin Khoshnevisan ◽  
Shahin Rafiee ◽  
Mahmoud Omid ◽  
Marziye Yousefi ◽  
Mehran Movahedi
2016 ◽  
Vol 133 ◽  
pp. 924-931 ◽  
Author(s):  
Ashkan Nabavi-Pelesaraei ◽  
Shahin Rafiee ◽  
Homa Hosseinzadeh-Bandbafha ◽  
Shahaboddin Shamshirband

2019 ◽  
Vol 17 (3) ◽  
pp. 137-150
Author(s):  
جبراییل تقی نژاد ◽  
عادل واحدی ◽  
فیاض رنجبر

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Muhammad Imran ◽  
Orhan Ozcatalbas

AbstractThis study aimed to model energy use, energy efficiency, and greenhouse gas emissions in rain-fed wheat production by using a nonparametric data envelopment analysis (DEA) method. Data were collected through face-to-face interviews with 140 wheat farmers in 4 districts of Antalya Province. The energy inputs (independent variables) were human labor, seeds, chemical fertilizers, herbicides, and diesel fuel, and the energy output was the dependent variable. The results showed that the average energy consumption and the output energy for the studied wheat production system were 21. 07GJ ha−1 and 50. 99 GJ ha−1, respectively, and the total GHG emissions were calculated to be 592.12 kg CO2eq ha−1. Chemical fertilizer has the highest share of energy consumption and total GHG emissions. Based on the results from DEA, the technical efficiency of the farmers was found to be 0.81, while pure technical and scale efficiencies were 0.65 and 0.76, respectively. The results also highlighted that there is a potential opportunity to save approximately 14% (2.93 GJ ha−1) of the total energy consumption and consequently a 17% reduction in GHG emissions by following the optimal amounts of energy consumption while keeping the wheat yield constant. Efficient use of energy and reduction in GHG emissions will lead to resource efficiency and sustainable production, which is the main aim of the green economy.


2021 ◽  
Vol 17 (1) ◽  
pp. 1-16
Author(s):  
Asim Hasan ◽  
Rahil Akhtar Usmani

Rising greenhouse gas emissions is an important issue of the current time. India’s massive greenhouse gas emissions is ranked third globally. The escalating energy demand in the country has opened the gateway for further increase in emissions. Recent studies suggest strong nexus between energy consumption, economic growth, and carbon emissions. This study has the objective to empirically test the aforementioned interdependencies. The co-integration test and multivariate vector error correction model (VECM) are used for the analysis and the Granger Causality test is used to establish the direction of causality. The time-series data for the period of 1971–2011 is used for the analysis. The results of the study confirm strong co-integration between variables. The causality results show that economic growth exerts a causal influence on carbon emissions, energy consumption exerts a causal influence on economic growth, and carbon emissions exert a causal influence on economic growth. Based on the results, the study suggests a policy that focuses on energy conservation and gradual replacement of fossil fuels with renewable energy sources, which would be beneficial for the environment and the society.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Florian Stuhlenmiller ◽  
Steffi Weyand ◽  
Jens Jungblut ◽  
Liselotte Schebek ◽  
Debora Clever ◽  
...  

Modern industry benefits from the automation capabilities and flexibility of robots. Consequently, the performance depends on the individual task, robot and trajectory, while application periods of several years lead to a significant impact of the use phase on the resource efficiency. In this work, simulation models predicting a robot’s energy consumption are extended by an estimation of the reliability, enabling the consideration of maintenance to enhance the assessment of the application’s life cycle costs. Furthermore, a life cycle assessment yields the greenhouse gas emissions for the individual application. Potential benefits of the combination of motion simulation and cost analysis are highlighted by the application to an exemplary system. For the selected application, the consumed energy has a distinct impact on greenhouse gas emissions, while acquisition costs govern life cycle costs. Low cycle times result in reduced costs per workpiece, however, for short cycle times and higher payloads, the probability of required spare parts distinctly increases for two critical robotic joints. Hence, the analysis of energy consumption and reliability, in combination with maintenance, life cycle costing and life cycle assessment, can provide additional information to improve the resource efficiency.


2012 ◽  
Vol 20 (1) ◽  
pp. 35-40
Author(s):  
S. Štefunková

Characteristics of asphalt mixes with FT additiveThis article is focused on low-temperature asphalt mixture technologies using FT additive and RAP. The modern production and use of asphalt mixture technologies with reduced temperatures has many advantages. These advantages mainly help to save energy and the environment. Lower temperatures enable a reduction in energy consumption, a more acceptable working environment for workers, a reduction in negative environmental effects, such as greenhouse gas emissions, and an improvement in the workability of mixtures and a prolongation of their duration. This technology is currently becoming popular in many countries.


Sign in / Sign up

Export Citation Format

Share Document