Experimental study on organic Rankine cycle utilizing R245fa, R123 and their mixtures to investigate the maximum power generation from low-grade heat

Energy ◽  
2017 ◽  
Vol 133 ◽  
pp. 636-651 ◽  
Author(s):  
Kuo-Cheng Pang ◽  
Shih-Chi Chen ◽  
Tzu-Chen Hung ◽  
Yong-Qiang Feng ◽  
Shih-Cheng Yang ◽  
...  
2018 ◽  
Vol 64 ◽  
pp. 06004 ◽  
Author(s):  
Iqbal Md Arbab ◽  
Rana Sohel ◽  
Ahmadi Mahdi ◽  
Close Thomas ◽  
Date Abhijit ◽  
...  

Despite the current energy crisis, a large amount of low grade heat (below 100oC) is being wasted for the lack of cost effective energy conversion technology. In the case of the conventional Organic Rankine Cycle (ORC) based geothermal power stations, only about 20% of available heat can be utilised due to a technological limitation as there is a phase change in the working fluid involved during the addition of heat which decreases utilisation effectiveness of the system. Therefore, in this paper, a trilateral flash cycle (TFC) based system has been studied to find out its prospect for utilizing more power from the same heat resources as the ORC. The TFC is a thermodynamic cycle that heats the working fluid as a saturated liquid from which it starts its expansion stage. The flash expansion is achieved by feeding the saturated high-pressured liquid working fluid through a convergent-divergent nozzle at which point it undergoes a flash expansion in the low-pressure environment of the generator housing. The momentum of the working fluid is extracted via a Pelton wheel and the cycle is completed with working fluid condensation and pressurisation. The analytical comparative study between the ORC and TFC based system shows that the TFC has about 50% more power generation capability and almost zero contribution on global warming.


Author(s):  
M. Deligant ◽  
S. Braccio ◽  
T. Capurso ◽  
F. Fornarelli ◽  
M. Torresi ◽  
...  

Abstract The Organic Rankine Cycle (ORC) allows the conversion of low-grade heat sources into electricity. Although this technology is not new, the increase in energy demand and the need to reduce CO2 emissions create new opportunities to harvest low grade heat sources such as waste heat. Radial turbines have a simple construction, they are robust and they are not very sensitive to geometry inaccuracies. Most of the radial inflow turbines used for ORC application feature a vaned nozzle ensuring the appropriate distribution angle at the rotor inlet. In this work, no nozzle is considered but only the vaneless gap (distributor). This configuration, without any vaned nozzle, is supposed to be more flexible under varying operating conditions with respect to fixed vanes and to maintain a good efficiency at off-design. This paper presents a performance analysis carried out by means of two approaches: a combination of meanline loss models enhanced with real gas fluid properties and 3D CFD computations, taking into account the entire turbomachine including the scroll housing, the vaneless gap, the turbine wheel and the axial discharge pipe. A detailed analysis of the flow field through the turbomachine is carried out, both under design and off design conditions, with a particular focus on the entropy field in order to evaluate the loss distribution between the scroll housing, the vaneless gap and the turbine wheel.


Energy ◽  
2019 ◽  
Vol 177 ◽  
pp. 94-105 ◽  
Author(s):  
Chih-Hung Lin ◽  
Pei-Pei Hsu ◽  
Ya-Ling He ◽  
Yong Shuai ◽  
Tzu-Chen Hung ◽  
...  

Energy ◽  
2015 ◽  
Vol 85 ◽  
pp. 534-542 ◽  
Author(s):  
Bernardo Peris ◽  
Joaquín Navarro-Esbrí ◽  
Francisco Molés ◽  
Adrián Mota-Babiloni

Sign in / Sign up

Export Citation Format

Share Document