Experimental investigation on overall performance of a millimeter-scale radial turbine for micro gas turbine

Energy ◽  
2017 ◽  
Vol 134 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Fu ◽  
Zhenping Feng ◽  
Guojun Li
Author(s):  
Lei Fu ◽  
Yan Shi ◽  
Qinghua Deng ◽  
Zhenping Feng

For millimeter-scale microturbines, the principal challenge is to achieve a design scheme to meet the aerothermodynamics, geometry restriction, structural strength and component functionality requirements while in consideration of the applicable materials, realizable manufacturing and installation technology. This paper mainly presents numerical investigations on the aerothermodynamic design, geometrical design and overall performance prediction of a millimeter-scale radial turbine with rotor diameter of 10mm. Four kinds of turbine rotor profiles were designed, and they were compared with one another in order to select the suitable profile for the micro radial turbine. The leaving velocity loss in micro gas turbines was found to be a large source of inefficiency. The approach of refining the geometric structure of rotor blades and the profile of diffuser were adopted to reduce the exit Mach number thus improving the total-static efficiency. Different from general gas turbines, micro gas turbines are operated in low Reynolds numbers, 104∼105, which has significant effect on flow separation, heat transfer and laminar to turbulent flow transition. Based on the selected rotor profile, several micro gas turbine configurations with different tip clearances of 0.1mm, 0.2mm and 0.3mm, respectively; two different isothermal wall conditions; and two laminar-turbulent transition models were investigated to understand the particular influence of low Reynolds number. These influences on the overall performance of the micro gas turbine were analyzed in details. The results indicate that these configurations should be included and emphasized during the design process of the millimeter-scale micro radial turbines.


Author(s):  
Hussain Sadig ◽  
Shaharin Anwar Sulaiman ◽  
Idris Ibrahim

2016 ◽  
Vol 188 (8) ◽  
pp. 1199-1219 ◽  
Author(s):  
Ward De Paepe ◽  
Parisa Sayad ◽  
Svend Bram ◽  
Jens Klingmann ◽  
Francesco Contino

2019 ◽  
Vol 12 (6) ◽  
pp. 1905-1917
Author(s):  
S. P. Shah ◽  
S. A. Channiwala ◽  
D. B. Kulshreshtha ◽  
G. C. Chaudhari ◽  
◽  
...  

Author(s):  
Hannah Seliger ◽  
Andreas Huber ◽  
Manfred Aigner

This paper presents a comprehensive experimental investigation of a newly designed single-stage combustion system based on the flameless oxidation (FLOX®) technology for a small scale micro gas turbine (MGT). It is used for a combined heat and power plant (CHP) with an electrical power output of 3 kW, using natural gas as fuel. Flameless oxidation is characterized by a flame distributed over a large volume and a high internal recirculation of flue gas. Considering the high combustor inlet temperatures up to 1000 K as required for this application, the FLOX®-combustion concept offers various advantages compared to swirl-stabilized combustion systems in terms of flashback risk and exhaust gas emissions. This paper describes the detailed characterization of the jet-stabilized combustor. Two versions of the combustor were tested, one generic and one modified version suitable for the integration into the micro gas turbine at an atmospheric test rig with optical access. The stable operating range, including lean blow out (LBO) limits, was determined for varying equivalence ratios, thermal powers and preheat temperatures. The influence of these parameters on the combustion characteristics is discussed. Furthermore, the shape and location of the heat release zone is investigated with OH*-chemiluminescence (OH* CL). The exhaust gas emissions NOx, CO and unburned hydrocarbon (UHC) were also measured. The results demonstrate that the developed combustor design ensures stable and reliable performance. It also offers a high operational flexibility and low pressure loss with NOx, CO and UHC emissions far below regulation limits for all relevant engine conditions.


Sign in / Sign up

Export Citation Format

Share Document