Aerodynamic Design and Numerical Investigation on Overall Performance of a Micro Radial Turbine With Millimeter-Scale

Author(s):  
Lei Fu ◽  
Yan Shi ◽  
Qinghua Deng ◽  
Zhenping Feng

For millimeter-scale microturbines, the principal challenge is to achieve a design scheme to meet the aerothermodynamics, geometry restriction, structural strength and component functionality requirements while in consideration of the applicable materials, realizable manufacturing and installation technology. This paper mainly presents numerical investigations on the aerothermodynamic design, geometrical design and overall performance prediction of a millimeter-scale radial turbine with rotor diameter of 10mm. Four kinds of turbine rotor profiles were designed, and they were compared with one another in order to select the suitable profile for the micro radial turbine. The leaving velocity loss in micro gas turbines was found to be a large source of inefficiency. The approach of refining the geometric structure of rotor blades and the profile of diffuser were adopted to reduce the exit Mach number thus improving the total-static efficiency. Different from general gas turbines, micro gas turbines are operated in low Reynolds numbers, 104∼105, which has significant effect on flow separation, heat transfer and laminar to turbulent flow transition. Based on the selected rotor profile, several micro gas turbine configurations with different tip clearances of 0.1mm, 0.2mm and 0.3mm, respectively; two different isothermal wall conditions; and two laminar-turbulent transition models were investigated to understand the particular influence of low Reynolds number. These influences on the overall performance of the micro gas turbine were analyzed in details. The results indicate that these configurations should be included and emphasized during the design process of the millimeter-scale micro radial turbines.

Author(s):  
Lei Fu ◽  
Yan Shi ◽  
Qinghua Deng ◽  
Zhenping Feng

For millimeter-scale microturbines, the principal challenge is to achieve a design scheme to meet the aerothermodynamics, geometry restriction, structural strength, and component functionality requirements while in consideration of the applicable materials, realizable manufacturing, and installation technology. This paper mainly presents numerical investigations on the aerothermodynamic design, geometrical design, and overall performance prediction of a millimeter-scale radial turbine with a rotor diameter of 10 mm. Four kinds of turbine rotor profiles were designed, and they were compared with one another in order to select the suitable profile for the microradial turbine. The leaving velocity loss in microgas turbines was found to be a large source of inefficiency. The approach of refining the geometric structure of rotor blades and the profile of diffuser were adopted to reduce the exit Mach number, thus improving the total-static efficiency. Different from general gas turbines, microgas turbines are operated in low Reynolds numbers (104–105), which has significant effect on flow separation, heat transfer, and laminar to turbulent flow transition. Based on the selected rotor profile, several microgas turbine configurations with different tip clearances of 0.1 mm, 0.2 mm, and 0.3 mm, two different isothermal wall conditions, and two laminar-turbulent transition models were investigated to understand the particular influences of low Reynolds numbers. These influences on the overall performance of the microgas turbine were analyzed in detail. The results indicate that these configurations should be included and emphasized during the design process of the millimeter-scale microradial turbines.


Author(s):  
Takayuki Matsunuma ◽  
Hiro Yoshida ◽  
Norihiko Iki ◽  
Takumi Ebara ◽  
Satoshi Sodeoka ◽  
...  

A series of operation tests of a ceramic micro gas turbine has been successfully carried out. The baseline machine is a small single-shaft turbojet engine (J-850, Sophia Precision Corp.) with a centrifugal compressor, an annular type combustor, and a radial turbine. As a first step, an Inconel 713C alloy turbine rotor of 55 mm in diameter was replaced with a ceramic rotor (SN-235, Kyocera Corporation). A running test was conducted at rotational speeds of up to 140,000 rpm in atmospheric air. At this rotor speed, the compression pressure ratio and the thrust were 3 and 100 N, respectively. The total energy level (enthalpy and kinetic energy) of the exhaust gas jet was 240 kW. If, for example, it is assumed that 10% of the total power of the exhaust jet gas was converted into electricity, the present system would correspond to a generator with 24 kW output power. The measured turbine outlet temperature was 950°C (1,740°F) and the turbine inlet temperature was estimated to be 1,280°C (2,340°F). Although the ceramic rotor showed no evidence of degradation, the Inconel nozzle immediately in front of the turbine rotor partially melted in this rotor condition. As a second step, the Inconel turbine nozzle and casing were replaced with ceramic parts (SN-01, Ohtsuka Ceramics Inc.). The ceramic nozzle and case were supported by metal parts. Through tests with the ceramic nozzle, it became evident that one of the key technologies for the development of ceramic gas turbines is the design of the interface between the ceramic components and the metallic components, because the difference between the coefficients of linear thermal expansion of the ceramic and metal produces large thermal stress at their interface in the high-temperature condition. A buffer material made of alumina fiber was therefore introduced at the interface between the ceramic and metal.


Author(s):  
C. Rodgers

Inward flow radial and mixed flow turbines are effectively utilized in both small gas turbine auxiliary power units (APU’s) and turbochargers, where moderately high levels of efficiency can be readily attained with simple cast components, less sensitive to blade end-gap clearances than axial turbines. This paper provides an overview of radial turbine performance characteristics for small gas turbine applications as basically influenced by specific speed, velocity ratio, exit flow coefficient, and rotor tip to exducer root mean square (RMS) diameter ratio. Since turbine rotor mass and inertia play important roles in structural integrity and engine acceleration characteristics, the importance of turbine velocity ratio selection upon rotor tip diameter, and cycle performance are discussed. The effects of rotor reaction on radial turbine flow versus pressure characteristics are examined pertinent to engine matching requirements. Engine transient performance is addressed, as influenced by turbine operation towards and beyond runaway conditions.


Author(s):  
Torsten Eggert ◽  
Bjoern Schenk ◽  
Helmut Pucher

Optical pyrometers provide many advantages over intrusive measuring techniques in determining the spatial and time varying temperature distribution of fast rotating components in gas turbines. This paper describes the development and evaluation of a versatile high resolution pyrometer system and its application to radial turbine rotor temperature mapping as has been done in a R&D project at the Technical University Berlin under funding from Siemens Power Generation (KWU). The development goal was a pyrometer system with a temporal resolution of 1μs, a minimum field of view of 1 mm, and a measurement range from 600 to 1500°C. A prototype of the pyrometer system has been built and tested at the small gas turbine test facility of the Technical University Berlin. The system yielded excellent results with respect to measurement uncertainty, resolution, and reliability. Finally, measurement results obtained with the new system on a radial turbine rotor and on a heavy duty industrial gas turbine are compared with measurements conducted with a commercially available turbine pyrometer system.


Author(s):  
R. A. Rooth

Recently, in the Netherlands a number of 11 combi blocks with prefitted gas turbines have been built. Additionally, there are preparations for five 335 MWe units at the Eems power station and plans for a further seven 250 MW heat and power stations. This means that by 2002 the generating industry will be operating seventy-five gas turbines with a total gas turbine power of 5700 MWe. These data serve to illustrate that gas turbines will be the workhorse of the Dutch generating industry in the coming decades, and that security of supply, efficiency, emissions and generating cost will to a large extent be determined by the gas turbine. However, the introduction of the gas turbine, the increase in scale of the machines and the fact that they are increasingly being used in base load units have also led to problems and forced unavailability. The problems are related to creep, thermal stresses and fatigue of combustion chambers, turbine rotor blades, rotors etc. Apart from these problem areas, other subjects of interest are optimization of inlet air filtering and compressor cleaning. It is the Dutch Electricity Production industry who realized that a substantial R&D effort is necessary to solve those user related problems and who formulated and ordered the execution of the target project Gas turbines


Author(s):  
R. A. Rooth

In the 80’s and early 90’s, in the Netherlands 11 combi blocks with prefitted gas turbines have been built. This repowering programme increased the efficiency of the units involved by several percentage points. Additionally, the commissioning of the five 335 MWe units at the Eems power station is in progress and plans exist for a farther seven 250 MW heat and power stations. This means that by 2002 the generating industry will be operating seventy-five gas turbines with a total gas turbine power of 5700 MWe. These data serve to illustrate mat gas turbines will be the workhorse of the Dutch generating industry in the coming decades, and that security of supply, efficiency, emissions and generating cost will to a large extent be determined by the gas turbine. However, the introduction of the gas turbine, driven by the possibility of high-efficiency electricity generation in e.g. combined cycle units, the increase in scale of the machines and the fact that they are increasingly being used in base load units have also led to problems and forced unavailability, as will be shown under goals of the project. The problems are related to creep, thermal stresses and fatigue of combustion chambers, turbine rotor blades, rotors etc. Apart from these problem areas, other subjects of interest are optimization of inlet air filtering and compressor cleaning. It is the Dutch Electricity Production industry who realized that a substantial R&D effort is necessary to solve those user related problems and formulated the execution of the target project Gas Turbines.


Author(s):  
O. Schneider ◽  
H. J. Dohmen ◽  
A. W. Reichert

For further improvements in efficiency and performance a better understanding of the internal cooling air system of gas turbines, which provides the turbine rotor blades with cooling air, is necessary. With the increase of cooling air passing through the internal air system, a greater amount of air borne particles are transported to the film cooling holes at the turbine blade surface. In spite of their small size, these holes are critical for blade cooling. Blockage of only a few holes could have harmful effects on the cooling film surrounding the blade. As a result, a reduced mean time between maintenance or even unexpected operation faults of the gas turbine during operation occurs. With a new test rig, the behaviour of particles in the internal cooling air system could be investigated at realistic flow conditions compared to a modern, real world gas turbine. It is possible to simulate different particle sizes and dust concentrations in the coolant air. A first comparison of design expectations and measurements, showing the behaviour of air borne particles in the internal cooling air system under realistic environmental conditions is given in the paper. Further the design tools for nearly a full internal air system flow path could be validated with this new test rig.


Author(s):  
Hiro Yoshida ◽  
Takayuki Matsunuma ◽  
Norihiko Iki ◽  
Yoshio Akimune ◽  
Hiroshi Hoya

A series of operation tests by using a desktop size gas turbine has been successfully carried out. In the first step of the tests, we have concentrated ourselves on the operation at elevated temperatures. Thus the duration of the bench test at each rotation speed was set to be 1 minute. The baseline machine is J-850 (Sophia Precision, Co., Ltd.) originally made for model airplanes. In this study, we replaced an INCONEL 713C alloy turbine rotor with 5.5 cm diameter into a type SN235 ceramic rotor (Kyocera Corporation). Mixture of 70% white kerosene and 30% gasoline was used as the fuel. The running test was made at the rotational speeds up to 140,000 r.p.m. in the atmospheric air. The basic performance of the small gas turbine was found as follows: At 140,000 r.p.m., 1) the turbine inlet temperature was estimated to be higher than 1,200. This estimation was supported by the observation of the partially melted INCONEL alloy nozzle located before the ceramic rotor. But the ceramic rotor revealed no damages. 2) The compression ratio and the thrust of the ceramic rotor turbine attained at 140,000 r.p.m. were 3 and 100 N, respectively. 3) Total energy level of the exhaust gas jet was 240 kW at the same rotation speed. Experiences learned from the present running tests suggest that the small gas turbine system employed in this study could be a useful tool to quicken the cycle of R & D of micro ceramic gas turbines with reasonable costs.


2002 ◽  
Vol 124 (3) ◽  
pp. 439-444 ◽  
Author(s):  
Torsten Eggert ◽  
Bjoern Schenk ◽  
Helmut Pucher

Optical pyrometers provide many advantages over intrusive measuring techniques in determining the spatial and time varying temperature distribution of fast rotating components in gas turbines. This paper describes the development and evaluation of a versatile high-resolution pyrometer system and its application to radial turbine rotor temperature mapping as has been done in a R&D project at the Technical University Berlin under funding from Siemens Power Generation (KWU). The development goal was a pyrometer system with a temporal resolution of 1 μs, a minimum field of view of 1 mm, and a measurement range from 600 to 1500°C. A prototype of the pyrometer system has been built and tested at the small gas turbine test facility of the Technical University Berlin. The system yielded excellent results with respect to measurement uncertainty, resolution, and reliability. Finally, measurement results obtained with the new system on a radial turbine rotor and on a heavy duty industrial gas turbine are compared with measurements conducted with a commercially available turbine pyrometer system.


Sign in / Sign up

Export Citation Format

Share Document