Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of Spirulina Platensis, α-cellulose, and lignin

Energy ◽  
2019 ◽  
Vol 179 ◽  
pp. 1103-1113 ◽  
Author(s):  
Haitao Chen ◽  
Zhixia He ◽  
Bo Zhang ◽  
Huan Feng ◽  
Sabariswaran Kandasamy ◽  
...  
2020 ◽  
Vol 849 ◽  
pp. 47-52
Author(s):  
Siti Jamilatun ◽  
Aster Rahayu ◽  
Yano Surya Pradana ◽  
Budhijanto ◽  
Rochmadi ◽  
...  

Nowadays, energy consumption has increased as a population increases with socio-economic developments and improved living standards. Therefore, it is necessary to find a replacement for fossil energy with renewable energy sources, and the potential to develop is biofuels. Bio-oil, water phase, gas, and char products will be produced by utilizing Spirulina platensis (SPR) microalgae extraction residue as pyrolysis raw material. The purpose of this study is to characterize pyrolysis products and bio-oil analysis with GC-MS. Quality fuel is good if O/C is low, H/C is high, HHV is high, and oxygenate compounds are low, but aliphatic and aromatic are high. Pyrolysis was carried out at a temperature of 300-600°C with a feed of 50 grams in atmospheric conditions with a heating rate of 5-35°C/min, the equipment used was a fixed-bed reactor. The higher the pyrolysis temperature, the higher the bio-oil yield will be to an optimum temperature, then lower. The optimum temperature of pyrolysis is 550°C with a bio-oil yield of 23.99 wt%. The higher the pyrolysis temperature, the higher the H/C, the lower O/C. The optimum condition was reached at a temperature of 500°C with the values of H/C, and O/C is 1.17 and 0.47. With an increase in temperature of 300-600°C, HHV increased from 11.64 MJ/kg to 20.63 MJ/kg, the oxygenate compound decreased from 85.26 to 37.55 wt%. Aliphatics and aromatics increased, respectively, from 5.76 to 36.72 wt% and 1.67 to 6.67 wt%.


2019 ◽  
Vol 92 (5) ◽  
pp. 1537-1547 ◽  
Author(s):  
Xiuzheng Zhuang ◽  
Hao Zhan ◽  
Yanpei Song ◽  
Yanqin Huang ◽  
Xiuli Yin ◽  
...  

2020 ◽  
pp. 0734242X2095740
Author(s):  
Lixian Wang ◽  
Yong Chi ◽  
Di Shu ◽  
Elsa Weiss-Hortala ◽  
Ange Nzihou ◽  
...  

Kitchen waste (KW) has gradually become a prominent problem in municipal solid waste treatment. Hydrothermal liquefaction (HTL) is a promising method used to make fuel oil from food and KW. However, the upgrading of bio-oil is particularly important for the sake of industrial reuse. In this study, the KW from university restaurants was subjected to HTL experiments in order to study theoretical feasibility. With the change of conversion temperature and residence time, the optimal conversion working conditions in this study were determined according to the quality and yield of the bio-oil. Moreover, the bio-oil upgrading effects of different additives (hydrogen chloride, sodium hydroxide, and iron(III) chloride) on the HTL of KW were studied. Alkaline additives have an inhibitory effect on the bio-oil yield and positive effect on coke yield. Acidic additives and iron (Fe)-containing additives can promote bio-oil yield. As an important aspect of upgrading, the effect on the nitrogen content of bio-oil with additives was revealed. The alkaline and Fe-containing additives have little effect on reducing the viscosity of the bio-oil while with the appropriate ratio (2.5 mol•kg−1) of acidic additives to the raw material, the static and dynamic fluidity of the oil phase products are reduced to about 0.1 Pa•s.


2020 ◽  
Vol 262 ◽  
pp. 114550 ◽  
Author(s):  
Xinfei Chen ◽  
Xiaoqian Ma ◽  
Xianghao Zeng ◽  
Chupeng Zheng ◽  
Xiaoluan Lu

2015 ◽  
Vol 29 (4) ◽  
pp. 2422-2430 ◽  
Author(s):  
Elia Armandina Ramos-Tercero ◽  
Alberto Bertucco ◽  
D. W. F. (Wim) Brilman

2019 ◽  
Vol 15 (1) ◽  
pp. 186-198
Author(s):  
Gopalakrishnan Govindasamy ◽  
Rohit Sharma ◽  
Sunu Subramanian

Development of catalyst with high deoxygenation activity and optimum process parameters are the key for getting the highest biooil yield with the least oxygen content by hydrothermal liquefaction. With this view, iron-cobalt oxides of Co/Fe ratio 0.33, 1.09, 2.35, and 3.52 were prepared by co-precipitation method, and characterized by XRD, BET surface area, chemical composition by EDX method, and evaluated for hydrothermal liquefaction of sugarcane bagasse in a high-pressure batch reactor under subcritical conditions using CO as process gas to find the optimum Co/Fe ratio and process parameters. Optimum Co/Fe ratio was found to be 1.09 as it gave the highest bio-oil yield of 57.6% with the least oxygen content of 10.8%, attributed to the cobalt ferrite, the major phase present in it. The optimum temperature, initial CO pressure, water/biomass ratio, catalyst/biomass ratio and reaction time for the highest oil yield with the least oxygen content were found to be 250 °C, 45 bar, 28, 0.4, and 120 min,  respectively. From the effect of reaction time, it was found that much of the hydrolysis of lignocellulose to water soluble oxygenates, its deoxygenation to bio-oil and its deoxygenation to low oxygen containing bio-oil took place in initial 15 min, 15 to 60 min, and from 30 to 120 min, respectively. Total oil yield (%) was lower by 21% and % oxygen in total oil was higher by 9.9% for spent catalyst compared to fresh catalyst indicating the erosion in the deoxygenation activity of catalyst and thus need for improving its hydrothermal stability. Copyright © 2020 BCREC Group. All rights reserved


Sign in / Sign up

Export Citation Format

Share Document