Impact of addition of two ether additives with high speed diesel- Calophyllum Inophyllum biodiesel blends on NOx reduction in CI engine

Energy ◽  
2019 ◽  
Vol 185 ◽  
pp. 39-54 ◽  
Author(s):  
A.K. Jeevanantham ◽  
K. Nanthagopal ◽  
B. Ashok ◽  
Ala'a H. Al-Muhtaseb ◽  
S. Thiyagarajan ◽  
...  
Energy ◽  
2013 ◽  
Vol 60 ◽  
pp. 222-229 ◽  
Author(s):  
Bhawna Yadav Lamba ◽  
Girdhar Joshi ◽  
Avanish K. Tiwari ◽  
Devendra Singh Rawat ◽  
Sudesh Mallick

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5941 ◽  
Author(s):  
Luqman Razzaq ◽  
Shahid Imran ◽  
Zahid Anwar ◽  
Muhammad Farooq ◽  
Muhammad Mujtaba Abbas ◽  
...  

In this study, waste cooking oil (WCO) was used as a feedstock for biodiesel production, where the pretreatment of WCO was performed using mineral acids to reduce the acid value. The response surface methodology (RSM) was used to create an interaction for different operating parameters that affect biodiesel yield. The optimised biodiesel yield was 93% at a reaction temperature of 57.50 °C, catalyst concentration 0.25 w/w, methanol to oil ratio 8.50:1, reaction stirring speed 600 rpm, and a reaction time of 3 h. Physicochemical properties, including lower heating value, density, viscosity, cloud point, and flash point of biodiesel blends, were determined using American Society for Testing and Materials (ASTM) standards. Biodiesel blends B10, B20, B30, B40, and B50 were tested on a compression ignition engine. Engine performance parameters, including brake torque (BT), brake power (BP), brake thermal efficiency (BTE), and brake specific fuel consumption (BSFC) were determined using biodiesel blends and compared to that of high-speed diesel. The average BT reduction for biodiesel blends compared to HSD at 3000 rpm were found to be 1.45%, 2%, 2.2%, 3.09%, and 3.5% for B10, B20, B30, B40, and B50, respectively. The average increase in BSFC for biodiesel blends compared to HSD at 3500 rpm were found to be 1.61%, 5.73%, 8.8%, 12.76%, and 18% for B10, B20, B30, B40, and B50, respectively.


2021 ◽  
Vol 13 (11) ◽  
pp. 6482
Author(s):  
Sergejus Lebedevas ◽  
Laurencas Raslavičius

A study conducted on the high-speed diesel engine (bore/stroke: 79.5/95.5 mm; 66 kW) running with microalgae oil (MAO100) and diesel fuel (D100) showed that, based on Wibe parameters (m and φz), the difference in numerical values of combustion characteristics was ~10% and, in turn, resulted in close energy efficiency indicators (ηi) for both fuels and the possibility to enhance the NOx-smoke opacity trade-off. A comparative analysis by mathematical modeling of energy and traction characteristics for the universal multi-purpose diesel engine CAT 3512B HB-SC (1200 kW, 1800 min−1) confirmed the earlier assumption: at the regimes of external speed characteristics, the difference in Pme and ηi for MAO100 and D100 did not exceeded 0.7–2.0% and 2–4%, respectively. With the refinement and development of the interim concept, the model led to the prognostic evaluation of the suitability of MAO100 as fuel for the FPT Industrial Cursor 13 engine (353 kW, 6-cylinders, common-rail) family. For the selected value of the indicated efficiency ηi = 0.48–0.49, two different combinations of φz and m parameters (φz = 60–70 degCA, m = 0.5 and φz = 60 degCA, m = 1) may be practically realized to achieve the desirable level of maximum combustion pressure Pmax = 130–150 bar (at α~2.0). When switching from diesel to MAO100, it is expected that the ηi will drop by 2–3%, however, an existing reserve in Pmax that comprises 5–7% will open up room for further optimization of energy efficiency and emission indicators.


2011 ◽  
Vol 4 (2) ◽  
pp. 2240-2256 ◽  
Author(s):  
Carlo Alberto Rinaldini ◽  
Enrico Mattarelli ◽  
Valeri Golovitchev

2009 ◽  
Author(s):  
Pieter Roels ◽  
Yves Sledsens ◽  
Sebastian Verhelst ◽  
Roger Sierens ◽  
Lieven Vervaeke

Sign in / Sign up

Export Citation Format

Share Document