Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine

Energy ◽  
2019 ◽  
Vol 189 ◽  
pp. 116157 ◽  
Author(s):  
Emeel Kerikous ◽  
Dominique Thévenin
2020 ◽  
Vol 11 (1) ◽  
pp. 267
Author(s):  
Han-Tang Lin ◽  
Yunn-Horng Guu ◽  
Wei-Hsuan Hsu

Global warming, climate change, and ever-increasing energy demand are among the pressing challenges currently facing humanity. Particularly, indoor air conditioning, a major source of energy consumption, requires immediate improvement to prevent energy crises. In this study, various airfoil profiles were applied to create a window-type convection device that entrains air to improve convection between indoor and outdoor airflows and adjust the indoor temperature. How the geometric structure of the convection device affects its air entrainment performance was investigated on the basis of various airfoil profiles and outlet slit sizes of the airflow multiplier. The airfoil profiles were designed according to the 4-digit series developed by the National Advisory Committee for Aeronautics. The results revealed that airfoil thickness, airfoil camber, and air outlet slit size affected the mass flow rate of the convection device. Overall, the mass flow rate at the outlet of the convection device was more than 10 times greater than at the inlet, demonstrating the potential of the device to improve air convection. To validate these simulated results, the wind-deflector plate was processed using the NACA4424 airfoil with a 1.2 mm slit, and various operating voltages were applied to the convection device to measure the resulting wind speeds and calculate the corresponding mass flow rates. The experimental and simulated results were similar, with a mean error of <7%, indicating that the airfoil-shaped wind-deflector plate substantially improved air entrainment of the convection device to the goal of reduced energy consumption and carbon emissions.


Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 87
Author(s):  
Yongqiang Wang ◽  
Ye Liu ◽  
Xiaoyi Ma

The numerical simulation of the optimal design of gravity dams is computationally expensive. Therefore, a new optimization procedure is presented in this study to reduce the computational cost for determining the optimal shape of a gravity dam. Optimization was performed using a combination of the genetic algorithm (GA) and an updated Kriging surrogate model (UKSM). First, a Kriging surrogate model (KSM) was constructed with a small sample set. Second, the minimizing the predictor strategy was used to add samples in the region of interest to update the KSM in each updating cycle until the optimization process converged. Third, an existing gravity dam was used to demonstrate the effectiveness of the GA–UKSM. The solution obtained with the GA–UKSM was compared with that obtained using the GA–KSM. The results revealed that the GA–UKSM required only 7.53% of the total number of numerical simulations required by the GA–KSM to achieve similar optimization results. Thus, the GA–UKSM can significantly improve the computational efficiency. The method adopted in this study can be used as a reference for the optimization of the design of gravity dams.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hengrong Du ◽  
Qinfeng Li ◽  
Changyou Wang

Abstract In this paper, we will consider an optimal shape problem of heat insulation introduced by [D. Bucur, G. Buttazzo and C. Nitsch, Two optimization problems in thermal insulation, Notices Amer. Math. Soc. 64 (2017), 8, 830–835]. We will establish the existence of optimal shapes in the class of 𝑀-uniform domains. We will also show that balls are stable solutions of the optimal heat insulation problem.


2011 ◽  
Vol 63-64 ◽  
pp. 655-658
Author(s):  
Qi Hao ◽  
Sheng Jun Wu

Explicit finite element method is adopted to simulate the crashworthiness performance of four types of typical thin—walled structures used in vehicle by software LS-DYNA. The structures with the same material、area and length are crash by a rigid body with 40km/h in10ms, The crash processes and crashworthiness characters are analyzed by a series crash parameters: deformation energy with unit displacement, impact force and deceleration to look for the optimal shape with crashworthiness. With comparing, the double caps section has ascendant performance than the others. The simulating methods of welded-joints are discussed to analysis their effects on crashworthiness simulation.


Sign in / Sign up

Export Citation Format

Share Document