scholarly journals Design and Fabrication of a Novel Window-Type Convection Device

2020 ◽  
Vol 11 (1) ◽  
pp. 267
Author(s):  
Han-Tang Lin ◽  
Yunn-Horng Guu ◽  
Wei-Hsuan Hsu

Global warming, climate change, and ever-increasing energy demand are among the pressing challenges currently facing humanity. Particularly, indoor air conditioning, a major source of energy consumption, requires immediate improvement to prevent energy crises. In this study, various airfoil profiles were applied to create a window-type convection device that entrains air to improve convection between indoor and outdoor airflows and adjust the indoor temperature. How the geometric structure of the convection device affects its air entrainment performance was investigated on the basis of various airfoil profiles and outlet slit sizes of the airflow multiplier. The airfoil profiles were designed according to the 4-digit series developed by the National Advisory Committee for Aeronautics. The results revealed that airfoil thickness, airfoil camber, and air outlet slit size affected the mass flow rate of the convection device. Overall, the mass flow rate at the outlet of the convection device was more than 10 times greater than at the inlet, demonstrating the potential of the device to improve air convection. To validate these simulated results, the wind-deflector plate was processed using the NACA4424 airfoil with a 1.2 mm slit, and various operating voltages were applied to the convection device to measure the resulting wind speeds and calculate the corresponding mass flow rates. The experimental and simulated results were similar, with a mean error of <7%, indicating that the airfoil-shaped wind-deflector plate substantially improved air entrainment of the convection device to the goal of reduced energy consumption and carbon emissions.

2018 ◽  
Vol 204 ◽  
pp. 06007
Author(s):  
Mohammad Mahardika

Every year, Indonesia's population increase so as energy demand. To fulfill Indonesia's energy needs, the capacity of energy production should be increased. Indonesia government has made a solution by propose 35.000 MW program to increase energy production and electrification ratio in Indonesia. An insulated area where electricity did not reach, has many problem to get electricity such as limited infrastructure, low fuel energy content, and expensive turbine. To solve these problem, multi-vane expander (MVE) can be used to extract the low energy and is cheap. MVE have many advantages such as cheap, easy to manufacture, able to operate with 2 phase, and able to low speed operation. But, the disadvantage of this type of expander is leakage. In this paper, experimental and CFD analysis of MVE are conducted. The experiment generated power of 25.7 watt with isentropic and volumetric efficiency of 11.6% and 11.7% by using operating condition of 1.5 bar, 115.6 °C, 626 rpm, and mass flow rate of 80 kg/h. The CFD model of the expander is created with the same dimension and operating conditions as experimental. The result for isentropic efficiency is inversely proportional with mass flow rate and for volumetric efficiency, power, and expander rotation are directly proportional with mass flow rate.


Author(s):  
Khaled Yousef ◽  
Ahmed Hegazy ◽  
Abraham Engeda

Abstract This paper presents a Computational Fluid Dynamic (CFD) simulation for dry air/water-liquid and two-phase flow mixing in a vertical inverted U-tube using the mixture multiphase and turbulence models. This study is to investigate the flow behaviors and underlying some physical mechanisms encountered in dry air/water-liquid flow in the inverted U-tube. Water flows through the inverted U-tube while the dry air is entrained using the side-tube installed after the water flow downward. The inverted U-tube is tested at water mass flow rates of 2,4,6 and 8 kg/s, air mass flow rates, 0.000614–0.02292 kg/s, with dry air volume fractions 0.2–0.9. The obtained results are compared with the experimental data for model validation and the present CFD model is able to give an acceptable agreement. Also, the results show that, at water mass flow rate of 2 kg/s, there are vortices and turbulent intensity disturbances are noticed at the inverted U-tube higher part, which refers to an air entrainment occurrence from the side-tube. Theses disturbances starts to be stabilized at air mass flow rate around 0.00736 kg/s and air volume fraction, αa = 0.75. This means, if the air mass flow rate increases above this limit, the air entrainment may be blocked. On the other side, at water mass flow rate of 4 kg/s, there are little noticed disturbances until air mass flow rate of 0.00368 kg/s and αa = 0.43 and thereafter stabilized. After this point for water mass flow rate of 4 kg/s, increasing air mass flow rate may block the water flow and the whole inverted U-tube system possible stop flowing. Therefore, this study is able to estimate the required operational conditions and mass ratios for stable air entrainment process. Beyond these operational conditions, air entrainment may be blocked and the whole system discontinues its normal induced gravitational flow. In addition, this study proves that the inverted U-tube is able to generate a vacuum pressure up to 53.382 kPa based on the present geometrical configuration. This generated low-pressure by the inverted U-tube can be used for engineering applications which are working under vacuum and need continuous evacuating form the dry air and non-condensable gases. Furthermore, these findings motivate the utilizing of inverted U-tube for the air evacuation purposes for less power consuming in power plants.


2021 ◽  
Vol 11 (24) ◽  
pp. 11923
Author(s):  
Fábio Luiz da Costa Carrir ◽  
Cesare Biserni ◽  
Danilo Barreto Aguiar ◽  
Elizaldo Domingues dos Santos ◽  
Ivoni Carlos Acunha Júnior

The growing global demand for energy and the costly taxes on electric energy demonstrate the importance of seeking new techniques to improve energy efficiency in industrial facilities. Refrigeration units demand a large amount of electricity due to the high power needs of the components of the system. One strategy to reduce the electric energy consumption in these facilities is pressure condensation control. The objective here was to develop a logical control model where the physical quantities in the thermodynamic process can be monitored and used to determine the optimum point of the condensation pressure and the mass flow rate of the air in the evaporative condenser. The algorithm developed was validated through experiments and was posteriorly implemented in an ammonia industrial system of refrigeration over a period of sixteen months (480 days). The results showed that the operation of the evaporative condenser with a controlled air mass flow rate by logical modeling achieved a reduction of 7.5% in the consumption of electric energy, leading to a significant reduction in the operational cost of the refrigeration plant.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1128
Author(s):  
Yanqiang Kong ◽  
Weijia Wang ◽  
Zhitao Zuo ◽  
Lijun Yang ◽  
Xiaoze Du ◽  
...  

For the large scale air-cooled heat exchanger of a natural draft dry cooling system (NDDCS) in power plants, its thermo-flow characteristics are basically dominated by crosswinds. Unfortunately however, the detailed mechanisms of the crosswind effects have yet to be fully uncovered. Therefore, in this research, the local flow and heat transfer performances of the cooling deltas, which are also termed as the fundamental cells of the large-scale air-cooled heat exchanger, are specifically investigated with full consideration for the cell structure and the water-side temperature distribution at various wind speeds. A 3D CFD method with a realizable k-ε turbulence model, heat exchanger model, and porous media model is developed, and the accuracy and credibility of the numerical model are experimentally validated. With the numerical simulation, the overall 3D outlet air temperature of the large-scale air-cooled heat exchanger, and the corresponding local air velocity and temperature fields of the cooling deltas are qualitatively analyzed. Furthermore, the air-mass flow rate and heat rejection are also quantitatively studied at both the global and local views. The results depict that with an increase in the wind speed, the air mass flow rate and heat rejection will increase greatly for the frontal deltas; however, they will drop dramatically for the middle-front deltas. As for the middle- as well as the middle-rear deltas, the thermo-flow performances vary markedly at various wind speeds, which behave in the most deteriorated manner at a wind speed of 12 m/s. The rear deltas show the best thermo-flow performances at a wind speed of 12 m/s, but the worst at 16 m/s. A detailed analysis of the variable fields for each cooling delta may contribute to the performance improvement of the large-scale air-cooled heat exchanger of NDDCS.


2015 ◽  
Author(s):  
J. M. Barroso-Maldonado ◽  
J. M. Belman-Flores ◽  
C. Rubio-Maya

Transitioning from R134a refrigerant to a low global warming potential (GWP) refrigerant is a current issue of global importance. Although any refrigerant still has set; there are a few options to replace it such as the R1234yf. In this paper is presented a semi-empirical model to assess the energy performance of mixtures with R134a and its possible substitute R1234yf. The inputs variables to the computational model are: suction conditions (pressure and temperature), discharge pressure and rotation speed. With these variables the model must compute the following parameters: mass flow rate, discharge temperature and energy consumption. The model is validated with data obtained from an experimental facility; calculations are obtained within a relative error band of ±10% for mass flow rate and energy consumption, and an error of ±1 K for discharge temperature. Finally, the model is carried out to an energy simulation in order to predict the behavior of different mass fractions of R1234yf. Energy savings are found when R1234yf mass fraction is reduced from 1 to 0.9. Knowing that the mixture with y=0.9 may be used as its GWP is 150.


2020 ◽  
Author(s):  
Muhammad Irfan Dzaky ◽  
Engkos Achmad Kosasih ◽  
Ahmad Zikri ◽  
Salsabil Dwikusuma Prasetyo ◽  
Muhammad Badra Shidqi ◽  
...  

2012 ◽  
Vol 700 ◽  
pp. 406-418 ◽  
Author(s):  
Bettina Frohnapfel ◽  
Yosuke Hasegawa ◽  
Maurizio Quadrio

AbstractFlow control with the goal of reducing the skin-friction drag on the fluid–solid interface is an active fundamental research area, motivated by its potential for significant energy savings and reduced emissions in the transport sector. Customarily, the performance of drag reduction techniques in internal flows is evaluated under two alternative flow conditions, i.e. at constant mass flow rate or constant pressure gradient. Successful control leads to reduction of drag and pumping power within the former approach, whereas the latter leads to an increase of the mass flow rate and pumping power. In practical applications, however, money and time define the flow control challenge: a compromise between the energy expenditure (money) and the corresponding convenience (flow rate) achieved with that amount of energy has to be reached so as to accomplish a goal which in general depends on the specific application. Based on this idea, we derive two dimensionless parameters which quantify the total energy consumption and the required time (convenience) for transporting a given volume of fluid through a given duct. Performances of existing drag-reduction strategies as well as the influence of wall roughness are re-evaluated within the present framework; how to achieve the (application-dependent) optimum balance between energy consumption and convenience is addressed. It is also shown that these considerations can be extended to external flows.


Author(s):  
V.N. Petrov ◽  
◽  
V.F. Sopin ◽  
L.A. Akhmetzyanova ◽  
Ya.S. Petrova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document