scholarly journals Energy generation from palm oil mill effluent: A life cycle assessment of two biogas technologies

Energy ◽  
2020 ◽  
Vol 191 ◽  
pp. 116513 ◽  
Author(s):  
Siva Raman Sharvini ◽  
Zainura Zainon Noor ◽  
Chun Shiong Chong ◽  
Lindsay C Stringer ◽  
David Glew
2021 ◽  
Vol 411 ◽  
pp. 67-78
Author(s):  
Ivy Ai Wei Tan ◽  
J.R. Selvanathan ◽  
M.O. Abdullah ◽  
N. Abdul Wahab ◽  
D. Kanakaraju

Palm oil mill effluent (POME) discharged without treatment into watercourses can pollute the water source. Microbial fuel cell (MFC) has gained high attention as a green technology of converting organic wastewater into bio-energy. As an approach to overcome the limitations of the existing POME treatment methods, air-cathode MFC-Adsorption system is introduced as an innovative technology to treat POME and generate bio-electricity simultaneously. However, the use of conventional MFC with proton exchange membrane in large scale applications is restricted by the high cost and low power generation. Addition of mediator in MFC is essential in order to increase the electron transfer efficiency, hence enhancing the system performance. This study therefore aims to investigate the effect of different type of mediators i.e. congo red (CR), crystal violet (CV) and methylene blue (MB) on the performance of an affordable air-cathode MFC-Adsorption system made from earthen pot with POME as the substrate. The addition of different mediators altered the pH of the MFC-Adsorption system, in which more alkaline system showed better performance. The voltage generated in the system with CR, CV and MB mediator was 120.58 mV, 168.63 mV and 189.25 mV whereas the current generated was 2.41 mA, 3.37 mA and 3.79 mA, respectively. The power density of 290.79 mW/m3, 568.72 mW/m3 and 716.31 mW/m3 was produced in the MFC-Adsorption system with CR, CV and MB mediator, respectively. The highest POME treatment efficiency was achieved in MFC-Adsorption system with MB mediator, which resulted in biochemical oxygen demand, chemical oxygen demand, total suspended solids, turbidity and ammoniacal nitrogen removal of 75.3%, 84.8%, 91.5%, 86.1% and 23.31%, respectively. Overall, the air-cathode MFC-Adsorption system with addition of MB mediator was feasible for POME treatment and simultaneous bio-energy generation.


Author(s):  
Victor Baron ◽  
Mohamed Saoud ◽  
Joni Jupesta ◽  
Ikhsan Rezky Praptantyo ◽  
Hartono Tirto Admojo ◽  
...  

Palm oil mill’s co-products (empty fruit bunch – EFB and palm oil mill effluent – POME) management is a matter of concern in Indonesia. Co-composting is a promising waste management practice that would allow a reduction of environmental impact and a restitution of organic matter to the soil. This study is a part of a Life Cycle Assessment (LCA) project and aims to pinpoint the most environmentally impacting compartments of the palm oil production chain. It deals more specifically with the Life Cycle Inventory of data on the composting process based on site specific data. Data on the recycled biomass, energy demand and yielded compost properties were recorded in an industrial palm oil mill over one year. Due to the local conditions, high nutrient leaching from the compost were recorded and the compost remained very wet and hot (thermophilic phase). The composting process only led to 40% of methane avoidance compared to anaerobic digestion of POME, and the global nutrient recovery efficiency was below 50%. We identified the following critical parameters to increase environmental benefits from composting:      i) the POME/FFB ratio from the mill ii) the roofing of the composting platform, iii) the POME/EFB ratio, iv) the turning frequency, v) the recycling of leachates and vi) the process duration and drying period. The nutrient recovery and the doses of compost applied in the field depend on all of those inter-connected parameters. The data presented will be used within LCA models to assess net environmental benefits from various POME and EFB co-composting systems.


2018 ◽  
Vol 159 ◽  
pp. 01028
Author(s):  
Pertiwi Andarani ◽  
Winardi Dwi Nugraha ◽  
Desinta Sawitri ◽  
Wiwik Budiawan

The Crude Palm Oil industry has now become the largest agricultural industry in Indonesia. Nevertheless, the growth of CPO industry could also bring negative impacts on the environment if the company does not control their emissions and discharges properly. Life-cycle Assessment (LCA) is one of the tools that can assess the environmental impacts due to CPO production activities. This study aims to assess the potential environmental impacts arising from the CPO production system at Mill J, PT XYZ, Sumatera Island by using Eco-indicator 99. Based on this study, in 2015, the process in plantation and mill contributed to climate change category was 0.013 DALY or after normalized 202 Pt. Meanwhile, the land use category has 395 PDF*m2yr or 30.8 Pt. Meanwhile, all of the other categories were less than 30.8 Pt, hence, the highest impact of this CPO production system is climate change at the activities in industrial estate (fertilizers usage) and industry (emitted from waste water of palm oil mill).


2020 ◽  
Vol 188 ◽  
pp. 00018 ◽  
Author(s):  
Kiman Siregar ◽  
Achmadin Luthfi Machsun ◽  
Sholihati Sholihati ◽  
Rizal Alamsyah ◽  
Ichwana Ichwana ◽  
...  

New energy and renewable widely available in Indonesia. One of them is the biomass that can be used with gasification technology. Biomass is an organic matter to which derived from biological materials. This research was used integration gasification system with a gas engine, which works more properly with CO, and H2. The advantage of this biomass power plant compared the environmental impact on other types of plants such as coal-fired power plants, diesel power plants, etc. Therefore the potential of environmental impacts was generated, it is necessary to calculate quantitatively through the life cycle assessment methods. This research aimed to calculate impact assessment on electricity production from a Biomass Power Plant system through a life cycle assessment with boundary cradle to grave in Indonesia. The study revealed that greenhouse gas (GHG) emission of electricity production from an empty fruit bunch palm oil mill was 0.15 kg CO2-eq kWh–1. The gas engine was the highest GHG emission contributor during its life cycle. Empty fruit bunch as a source of biomass for electricity production was considered as climate-friendly power plant system due to its potential in reducing GHG emission from palm oil production and released lower GHG emission.


Sign in / Sign up

Export Citation Format

Share Document