Effects of oxygen concentration and inlet velocity on pulverized coal MILD combustion

Energy ◽  
2020 ◽  
Vol 198 ◽  
pp. 117376 ◽  
Author(s):  
Yucheng Kuang ◽  
Boshu He ◽  
Wenxiao Tong ◽  
Chaojun Wang ◽  
Zhaoping Ying
Author(s):  
Yu Wang ◽  
Qi He ◽  
Ming Liu ◽  
Weixiong Chen ◽  
Junjie Yan

In pulverized coal-fired plant, the U-type bend is commonly used in flue gas and pulverized coal pipe system to due to the constraints of outer space. And gas-solid two-phase flow exists in these pipelines. The erosion of the pipe has significant effect on the safety and reliability of pipelines. In present paper, the erosion characteristics of U-type bend were investigated through CFD (Computational Fluid Dynamics) method. The wear distribution on the pipe wall was obtained. And the particle flow characteristics in U-type bend were analyzed. The influence of inlet velocity, mass loading rate and particle size on the erosion rate was studied as well. Result suggested that the maximum erosion rate increases exponentially with the increase of inlet velocity. And maximum erosion rate increases linearly with the increasing mass loading rate. Increasing particle size can aggravate the wear on the pipe wall.


2018 ◽  
Vol 181 ◽  
pp. 361-374 ◽  
Author(s):  
Diego Perrone ◽  
Teresa Castiglione ◽  
Adam Klimanek ◽  
Pietropaolo Morrone ◽  
Mario Amelio

Fuel ◽  
2015 ◽  
Vol 142 ◽  
pp. 152-163 ◽  
Author(s):  
Masaya Muto ◽  
Hiroaki Watanabe ◽  
Ryoichi Kurose ◽  
Satoru Komori ◽  
Saravanan Balusamy ◽  
...  

Author(s):  
Ruochen Liu ◽  
Enke An ◽  
Kun Wu

The chemical-kinetic characteristics of oxy-coal MILD combustion under different initial temperature and oxygen concentration were studied numerically. Aromatic benzene was considered representative for coal molecule. A unique reaction pathway under low oxygen concentration was obtained, the activation energy and reaction rate constant of involved elementary reactions were calculated through classic transition state theory (TST). The results show that low oxygen concentration and high temperature is advantageous for thickening flame front as well as slowing down flame propagation; as oxygen concentration and temperature increase, the global activation energy increases with greater slope; the decomposition of C5H5 dominates under high oxygen concentration, while the decomposition and oxidation of C5H5 become equally important as oxygen concentration decreases, leading to a new pathway that the complexity of overall chemical reactions develops; the radical CH2CHO is easily trigged under low oxygen concentration, its decomposition reaction dominates in the unique pathway C5H5→C5H4O→c-C4H5CH2CHO→CH3 due to larger activation energy, where more CO escapes. The simulation results have theoretical referencing value, laying foundations for the further practical work.


Author(s):  
Z. Z. Kang ◽  
B. M. Sun ◽  
Y. H. Guo ◽  
W. Zhang ◽  
H. Q. Wei

Numerical simulation method is employed in this article to investigate various high-temperature air direct-ignition processes of pulverized coal (PC). Several important factors are analyzed, which are the inlet velocity of primary air flow, PC concentration and the velocity and temperature of high temperature air. The flow, combustion and heat transfer in high temperature air oil-free ignition burner can also be obtained from the simulation results, which are in accordance with the experimental data. The research provides guidance for structure improvement and operation optimization of burner.


2018 ◽  
Vol 667 ◽  
pp. 102-110 ◽  
Author(s):  
Jun Deng ◽  
Li-Feng Ren ◽  
Li Ma ◽  
Chang-Kui Lei ◽  
Gao-Ming Wei ◽  
...  

2015 ◽  
Vol 138 ◽  
pp. 252-262 ◽  
Author(s):  
Yaojie Tu ◽  
Hao Liu ◽  
Kai Su ◽  
Sheng Chen ◽  
Zhaohui Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document