Numerical Simulation of High-Temperature Air Direct-Ignition of Pulverized Coal

Author(s):  
Z. Z. Kang ◽  
B. M. Sun ◽  
Y. H. Guo ◽  
W. Zhang ◽  
H. Q. Wei

Numerical simulation method is employed in this article to investigate various high-temperature air direct-ignition processes of pulverized coal (PC). Several important factors are analyzed, which are the inlet velocity of primary air flow, PC concentration and the velocity and temperature of high temperature air. The flow, combustion and heat transfer in high temperature air oil-free ignition burner can also be obtained from the simulation results, which are in accordance with the experimental data. The research provides guidance for structure improvement and operation optimization of burner.

Author(s):  
Zhi-Zhong Kang ◽  
Bao-Min Sun

In China, over 70 percent of the power production feeds on thermal power plants running with pulverized coal (PC) fired boilers. Millions of tons of oil is consumed annually to ignite PC when the boiler starts up, as well as to stabilize the combustion. In this paper, one oil-free ignition technique is studied for oil-saving, in which high temperature air is used to ignite PC. As a key parameter, the effects of PC concentration on the ignition of PC are investigated by means of particular numerical simulations of FLUENT5.3. Under the given conditions of coal analysis, the author simulates the effects of different PC concentrations on ignition process, including ignition distance, temperature of flame and gas components. Part of the simulation results has the same tendency as the experimental data. The research provides guidance for structure improvement and operation optimization of the oil-free ignition burner by high temperature air.


2014 ◽  
Vol 1008-1009 ◽  
pp. 850-860 ◽  
Author(s):  
Zhou Wei Zhang ◽  
Jia Xing Xue ◽  
Ya Hong Wang

A calculation method for counter-current type coil-wound heat exchanger is presented for heat exchange process. The numerical simulation method is applied to determine the basic physical parameters of wound bundles. By controlling the inlet fluid velocity varying in coil-wound heat exchanger to program and calculate the iterative process. The calculation data is analyzed by comparison of numerical result and the unit three dimensional pipe bundle model was built. Studies show that the introduction of numerical simulation can simplify the pipe winding process and accelerate the calculation and design of overall configuration in coil-wound heat exchanger. This method can be applied to the physical modeling and heat transfer calculation of pipe bundles in coil wound heat exchanger, program to calculate the complex heat transfer changing with velocity and other parameters, and optimize the overall design and calculation of spiral bundles.


Author(s):  
J. S. Wang ◽  
Y. Qiu ◽  
L. Y. Li

Small-scale concave spherical pits, which have a special effect on heat transfer enhancement and turbulent drag reduction, are investigated by numerical simulation in detail. Two kinds of small-scale concave pits structures are designed on surface of a plate, which are located in the bottom of a rectangle channel. The characteristics of heat transfer and flow in channel are investigated and compared with a same channel with plate bottom by means of LES. Flow structure and temperature distribution near the pits are analyzed. The numerical simulation results indicate that the concave spherical pits disturb the flow field and vortex is induced by the pits. The turbulent coherent structure is affected by the induced vortex. The numerical simulation indicates that small scale pit can generate the vortex in couple. The range of vortex is accord with the array of small scale pit. The small scale pit can enhance the intensity of vortex. As a result, the temperature field near the pit is changed with generation of the vortex. The heat transfer mechanism on plate with small scale concave spherical pit is summarized.


2012 ◽  
Vol 538-541 ◽  
pp. 2061-2066
Author(s):  
Yang Zheng ◽  
Bao Lan Xiao ◽  
Wei Ming Wu ◽  
Xiao Li Yu ◽  
Guo Dong Lu

A radiator is one of the most important components in vehicular cooling system whose excellent fluid flow and heat transfer characteristics guarantees the engine operations. The calculation workload for performance simulation of a whole radiator is too huge due to its size. Experimental study is the conventional method to study radiator performance. This paper put forward a numerical simulation method and radiator heat transfer units were taken as study objects. Orthogonal experiment method was adopted to arrange multi-factor and multi-level calculation schemes. 23 samples with different fin parameters were simulated to investigate their thermal-hydraulic performances. Compared with experimental testing, this method greatly reduced sample manufacturing cost and testing cost, and offered data support for the effect factor study of radiator heat transfer units.


2007 ◽  
Vol 127 ◽  
pp. 259-264
Author(s):  
Hong Yuan Fang ◽  
Cheng Iei Fan

Numerical simulation method is employed in the article to analyze the stress field of thick 7B04 aluminum alloy board during manufacturing procedure of solution treatment, calendaring and stretching. The simulation results show that the surface of the board endures compressive stress while the core segment endures tensile stress, and the distribution of the stress is very inhomogeneous. The calendaring procedure helps to decrease the stress and redistribute the stress uniformly, but it also leads to stress concentration at the two ends of the board, which engenders bad influence on the subsequent processing. The board deforms plastically when being stretched, thus the stress decreases greatly and is redistributed uniformly.


2013 ◽  
Vol 712-715 ◽  
pp. 1600-1604
Author(s):  
Jing Zhao ◽  
Bao Lan Xiao ◽  
Wei Ming Wu ◽  
Xiao Li Yu ◽  
Guo Dong Lu

The excellent thermal hydraulic performances of coolers are the foundations of vehicular safety and stability. Structure, material, fin type and arrangement all have important effects on the thermal hydraulic performances. Numerical simulation method was adopted in this paper to investigate the effect of fin arrangement. The fluid flow and heat transfer performances were contrasted and analyzed under two different fin arrangements. It was found that fin arrangement effected thermal hydraulic performances severely and during the design process of a cooler, the performance requirements could be met through adjusting fin arrangements.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1053
Author(s):  
Chengmin Chen ◽  
Guangxia Liu ◽  
Lei Zhang ◽  
Guodong Wang ◽  
Yanjin Hou ◽  
...  

In this paper, a transient numerical simulation method is used to investigate the effects of the two furnace configurations on the thermal field: the shape of the melt–crystal (M/C) interface and the thermal stress in the growing multicrystalline ingot. First, four different power ratios (top power to side power) are investigated, and then three positions (i.e., the vertical, angled, and horizontal positions) of the insulation block are compared with the conventional setup. The power ratio simulation results show that with a descending power ratio, the M/C interface becomes flatter and the thermal stress in the solidified ingot is lower. In our cases, a power ratio of 1:3–1:4 is more feasible for high-quality ingot. The block’s position simulation results indicate that the horizontal block can more effectively reduce the radial temperature gradient, resulting in a flatter M/C interface and lower thermal stress.


2008 ◽  
Author(s):  
Esam M. Alawadhi

Natural convection flow in a cube with a heated strip is solved numerically. The heated strip is attached horizontally to the front wall and maintained at high temperature, while the entire opposite wall is maintained at low temperature. The heated strip simulates an array of electronic chips The Rayleigh numbers of 104, 105, and 106 are considered in the analysis and the heated strip is horizontally attached to the wall. The results indicate that the heat transfer strongly depends on the position of the heated strip. The maximum Nusselt number can be achieved if the heater is placed at the lower half of the vertical wall. Increasing the Rayleigh number significantly promotes heat transfer in the enclosure. Flow streamlines and temperature contours are presented, and the results are validated against published works.


Sign in / Sign up

Export Citation Format

Share Document