Discharging process and performance of a portable cold thermal energy storage panel driven by embedded heat pipes

Energy ◽  
2020 ◽  
Vol 205 ◽  
pp. 117987
Author(s):  
Shen Tian ◽  
Qifan Yang ◽  
Na Hui ◽  
Haozhi Bai ◽  
Shuangquan Shao ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3821
Author(s):  
Kassianne Tofani ◽  
Saeed Tiari

Latent heat thermal energy storage systems (LHTES) are useful for solar energy storage and many other applications, but there is an issue with phase change materials (PCMs) having low thermal conductivity. This can be enhanced with fins, metal foam, heat pipes, multiple PCMs, and nanoparticles (NPs). This paper reviews nano-enhanced PCM (NePCM) alone and with additional enhancements. Low, middle, and high temperature PCM are classified, and the achievements and limitations of works are assessed. The review is categorized based upon enhancements: solely NPs, NPs and fins, NPs and heat pipes, NPs with highly conductive porous materials, NPs and multiple PCMs, and nano-encapsulated PCMs. Both experimental and numerical methods are considered, focusing on how well NPs enhanced the system. Generally, NPs have been proven to enhance PCM, with some types more effective than others. Middle and high temperatures are lacking compared to low temperature, as well as combined enhancement studies. Al2O3, copper, and carbon are some of the most studied NP materials, and paraffin PCM is the most common by far. Some studies found NPs to be insignificant in comparison to other enhancements, but many others found them to be beneficial. This article also suggests future work for NePCM and LHTES systems.


2021 ◽  
Vol 292 ◽  
pp. 116843
Author(s):  
Anurag Goyal ◽  
Eric Kozubal ◽  
Jason Woods ◽  
Malek Nofal ◽  
Said Al-Hallaj

2000 ◽  
Vol 122 (4) ◽  
pp. 205-211 ◽  
Author(s):  
Marc A. Rosen ◽  
Ibrahim Dincer ◽  
Norman Pedinelli

The thermodynamic performance of an encapsulated ice thermal energy storage (ITES) system for cooling capacity is assessed using exergy and energy analyses. A full cycle, with charging, storing, and discharging stages, is considered. The results demonstrate how exergy analysis provides a more realistic and meaningful assessment than the more conventional energy analysis of the efficiency and performance of an ITES system. The overall energy and exergy efficiencies are 99.5 and 50.9 percent, respectively. The average exergy efficiencies for the charging, discharging, and storing periods are 86, 60, and over 99 percent, respectively, while the average energy efficiency for each of these periods exceeds 99 percent. These results indicate that energy analysis leads to misleadingly optimistic statements of ITES efficiency. The results should prove useful to engineers and designers seeking to improve and optimize ITES systems. [S0195-0738(00)00904-3]


Author(s):  
K. Nithyanandam ◽  
R. Pitchumani

Thermal energy Storage is a critical component of Concentrating Solar Power (CSP) plant, enabling uninterrupted operation of plant during periods of cloudy or intermittent solar weather. Investigations of Latent Thermal Energy Storage (LTES) which utilizes Phase Change Material (PCM) as a heat storage medium is considered due to its high energy storage density and low capital cost. However, the low thermal conductivity of the PCM restricts the solidification rate of the PCM leading to inefficient heat transfer between the PCM and the HTF which carries thermal energy to the power block. To address this, LTES embedded with heat pipes and PCM’s stored within the framework of porous metal foams possessing one to two orders of magnitude higher thermal conductivity than the PCM are considered in the present study. A transient, computational analysis of the metal foam (MF) enhanced LTES system with embedded heat pipes is performed to investigate the enhancement in the thermal performance of the system for different arrangement of heat pipes and design parameter of metal foams, during both charging and discharging operation.


1996 ◽  
Vol 118 (1) ◽  
pp. 32-37 ◽  
Author(s):  
S. Somasundaram ◽  
M. K. Drost ◽  
D. R. Brown ◽  
Z. I. Antoniak

Thermal energy storage can help cogeneration meet the energy generation challenges of the 21st century by increasing the flexibility and performance of cogeneration facilities. Thermal energy storage (TES) allows a cogeneration facility to: (1) provide dispatchable electric power while providing a constant thermal load, and (2) increase peak capacity by providing economical cooling of the combustion turbine inlet air. The particular systems that are considered in this paper are high-temperature diurnal TES, and TES for cooling the combustion turbine inlet air. The paper provides a complete assessment of the design, engineering, and economic benefits of combining TES technology with new or existing cogeneration systems, while also addressing some of the issues involved.


Sign in / Sign up

Export Citation Format

Share Document