Design, thermodynamic, and wind assessments of a compressed air energy storage (CAES) integrated with two adjacent wind farms: A case study at Abhar and Kahak sites, Iran

Energy ◽  
2021 ◽  
Vol 221 ◽  
pp. 119902
Author(s):  
Amir Reza Razmi ◽  
M. Soltani ◽  
Armin Ardehali ◽  
Kobra Gharali ◽  
M.B. Dusseault ◽  
...  
2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Marco Astolfi ◽  
Giulio Guandalini ◽  
Marco Belloli ◽  
Adriano Hirn ◽  
Paolo Silva ◽  
...  

Abstract A key approach to large renewable power management is based on implementing storage technologies, including batteries, power-to-gas, and compressed air energy storage (CAES). This work presents the preliminary design and performance assessment of an innovative type of CAES, based on underwater compressed air energy storage (UW-CAES) volumes and intended for installation in the proximity of deep-water seas or lakes. The UW-CAES works with constant hydrostatic pressure storage and variable volumes. The proposed system is adiabatic, not using any fuel to increase the air temperature before expansion; a sufficient turbine inlet temperature (TIT) is instead obtained through a thermal energy storage (TES) system which recovers the compression heat. The system includes (i) a set of turbomachines (modular multistage compressor, with partial intercooling; expansion turbine); (ii) a TES system with different temperature levels designed to recover a large fraction of the compression heat, allowing the subsequent heating of air prior to the expansion phase; (iii) an underwater modular compressed air storage, conceived as a network of rigid but open tanks lying on the seabed and allowing a variable-volume and constant pressure operation. The compressor operates at variable loads, following an oscillating renewable power input, according to strategies oriented to improve the overall system dispatchability; the expander can be designed to work either at full load, thanks to the stability of the air flowrate and of the TIT guaranteed by the thermal storage, or at variable load. This paper first discusses in detail the sizing and off-design characterization of the overall system; then it simulates a case study where the UW-CAES is coupled to a wind farm for peak shaving and dispatchability enhancement, evaluating the impact of a realistic power input on performances and plant flexibility. Although the assessment shall be considered preliminary, it is shown that round-trip efficiency (RTE) in the range of 75–80% can be obtained depending on the compressor section configuration, making the UW-CAES a promising technology compared to electrochemical and pumped-hydrostorage systems. The technology is also applied to perform peak-shaving of the electricity production from an off-shore wind farm; annual simulations, based on realistic wind data and considering part-load operation, result in global RTE around 75% with a 10–15% reduction in the average unplanned energy injection in the electric grid. The investigated case study provides an example of the potential of this system in providing power output peak shaving when coupled with an intermittent and nonpredictable energy source.


2014 ◽  
Vol 945-949 ◽  
pp. 2841-2845
Author(s):  
Yu Jie Liu ◽  
Wei Hua Li ◽  
Xiang Hua Luo ◽  
Cheng Su ◽  
Shi Xue Ding ◽  
...  

With the development of the power system, wind energy was applied to micro-grid system as a distributed generation. The output of the wind farms has the characteristic of intermittence and fluctuation, which would influent the stability of micro-grid system and can be solved effectively by compressed air energy storage system, a new energy storage technology. Because of the advantage of fast response, high economic performance and small environmental impacts, it has an extensive application prospect. This paper builds a micro-grid system with wind power generator, and control the output of micro-grid system by using compressed air energy storage system. The simulation result verifies that the compressed-air energy storage system can effectively suppress power fluctuation and improving the stability of the micro-grid system.


2021 ◽  
Vol 7 ◽  
Author(s):  
Francesco Antonio Tiano ◽  
Gianfranco Rizzo

The high concentration of CO2 in the atmosphere and the increase in sea and land temperatures make the use of renewable energy sources increasingly urgent. To overcome the problem of non-programmability of renewable sources, this study analyzes an energy storage system consisting of under water compressed air energy storage (UWCAES). A case study for fully power the Sicily region (Italy) with renewable energy source (wind and photovoltaic) is presented. From the real annual capacity values of the renewable plants installed in Sicily, a sizing of both the energy production and the storage system and its auxiliary services is evaluated. The optimization of the operation of the system as a whole, modeled with mathematical models already validated in previous studies, is obtained through dynamic programming. The electricity consumed annually by the region, equal to 19048.4 GWh, can be entirely satisfied by renewable energy sources. A sizing of plants powered by renewable sources for a nominal power of 15, 000 MW equally divided between photovoltaic and wind power is considered. The underwater air storage system has a maximum volume of 2.1 × 108 m3, while the compression and generation units have a total nominal power of 6, 900 and 3, 100 MW, respectively. The study finally presents a sensitivity analysis for the evaluation of the effects of the variation of the power produced by renewable energy sources and of Sicily energy consumption. The results show that carbon-free feeding is possible and that all the boundary conditions on the operation of the system can be met.


Sign in / Sign up

Export Citation Format

Share Document