scholarly journals Demand response strategies for the balancing of natural gas systems: application to a local network located in The Marches (Italy)

Energy ◽  
2021 ◽  
pp. 120293
Author(s):  
Lina Montuori ◽  
Manuel Alcázar-Ortega
Energy ◽  
2021 ◽  
pp. 121283
Author(s):  
Lina Montuori ◽  
Manuel Alcázar-Ortega ◽  
Carlos Álvarez-Bel

2018 ◽  
Vol 30 (1) ◽  
pp. 63-80 ◽  
Author(s):  
Paraskevas Panagiotidis ◽  
Andrew Effraimis ◽  
George A Xydis

The main aim of this work is to reduce electricity consumption for consumers with an emphasis on the residential sector in periods of increased demand. Efforts are focused on creating a methodology in order to statistically analyse energy demand data and come up with forecasting methodology/pattern that will allow end-users to organize their consumption. This research presents an evaluation of potential Demand Response programmes in Greek households, in a real-time pricing market model through the use of a forecasting methodology. Long-term Demand Side Management programs or Demand Response strategies allow end-users to control their consumption based on the bidirectional communication with the system operator, improving not only the efficiency of the system but more importantly, the residential sector-associated costs from the end-users’ side. The demand load data were analysed and categorised in order to form profiles and better understand the consumption patterns. Different methods were tested in order to come up with the optimal result. The Auto Regressive Integrated Moving Average modelling methodology was selected in order to ensure forecasts production on load demand with the maximum accuracy.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2165 ◽  
Author(s):  
Charles Kagiri ◽  
Lijun Zhang ◽  
Xiaohua Xia

Compressed natural gas stations serve customers who have chosen compressed natural gas powered vehicles as an alternative to diesel and petrol based ones, for cost or environmental reasons. The interaction between the compressed natural gas station and electricity grid requires an energy management strategy to minimise a significant component of the operating costs of the station where demand response programs exist. Such a strategy when enhanced through integration with a control strategy for optimising gas delivery can raise the appeal of the compressed natural gas, which is associated with reduced criteria air pollutants. A hierarchical operation optimisation approach adopted in this study seeks to achieve energy cost reduction for a compressed natural gas station in a time-of-use electricity tariff environment as well as increase the vehicle fuelling efficiency. This is achieved by optimally controlling the gas dispenser and priority panel valve function under an optimised schedule of compressor operation. The results show that electricity cost savings of up to 60.08% are achieved in the upper layer optimisation while meeting vehicle gas demand over the control horizon. Further, a reduction in filling times by an average of 16.92 s is achieved through a lower layer model predictive control of the pressure-ratio-dependent fuelling process.


Sign in / Sign up

Export Citation Format

Share Document