A novel solar-powered self-blowing air heating system with active control based on a quasi-Stirling cycle

Energy ◽  
2021 ◽  
pp. 120454
Author(s):  
A.R. Tavakolpour-Saleh ◽  
A. Hamzavi ◽  
A. Omidvar
Author(s):  
Vijayakumar Rajendran ◽  
Harichandran Ramasubbu ◽  
Karthick Alagar ◽  
Vignesh Kumar Ramalingam

An experimental study has been carried out to enhance a solar air heater’s performance by integrating artificial roughness through baffles on the absorber plate. In this paper, the thermal and energy matrices analysis of a Solar Air Heater (SAH) roughened with V up perforated baffles have been investigated. The effect of various mass flow rates on the SAH was analyzed with and without baffles. Experimental outputs like outlet air temperature, useful energy (heat) gain and thermal efficiency were evaluated to confirm the performance improvement. The baffled absorber plate SAH was found to give the maximum thermal efficiency and useful energy gain of 89.3% and 1321.37 W at a mass flow rate of 0.0346 kg/s, 13% and 12% higher than SAH without baffle. This result showed that the V up-shaped ribs in flow arrangement provide better thermal performance than smooth plate SAH for the parameter investigated. Energy matrices analysis and carbon dioxide mitigation of the SAH system were also analyzed.


Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 275
Author(s):  
Ahmed J. Hamad

One essential utilization of phase change materials as energy storage materials is energy saving and temperature control in air conditioning and indirect solar air drying systems. This study presents an experimental investigation evaluating the characteristics and energy savings of multiple phase change materials subjected to internal flow in an air heating system during charging and discharging cycles. The experimental tests were conducted using a test rig consisting of two main parts, an air supply duct and a room model equipped with phase change materials (PCMs) placed in rectangular aluminum panels. Analysis of the results was based on three test cases: PCM1 (Paraffin wax) placed in the air duct was used alone in the first case; PCM2 (RT–42) placed in the room model was used alone in the second case; and in the third case, the two PCMs (PCM1 and PCM2) were used at the same time. The results revealed a significant improvement in the energy savings and room model temperature control for the air heating system incorporated with multiple PCMs compared with that of a single PCM. Complete melting during the charging cycle occurred at temperatures in the range of 57–60 °C for PCM1 and 38–43 °C for PCM2, respectively, thereby validating the reported PCMs’ melting–solidification results. Multiple PCMs maintained the room air temperature at the desired range of 35–45.2 °C in the air heating applications by minimizing the air temperature fluctuations. The augmentation in discharging time and improvement in the room model temperature using multiple PCMs were about 28.4% higher than those without the use of PCMs. The total energy saving using two PCMs was higher by about 29.5% and 46.7% compared with the use of PCM1 and PCM2, respectively. It can be concluded that multiple PCMs have revealed higher energy savings and thermal stability for the air heating system considered in the current study.


2011 ◽  
Vol 71-78 ◽  
pp. 2073-2076
Author(s):  
Fen E Hu ◽  
Zhi Juan Wang

A solar air drying system including solar air collector, drying cabinet and air blower for notoginseng drying has been constructed and tested. Two identical air solar collectors with two air channels, V-groove absorption heat plates and a single glass cover have been employed. The results of test show that the solar air collectors can obtain a good thermal performance in winter season. When the air flow mass rate is fixed at 0.0597kg·s-1, the maximum values of thermal efficiency and outlet air temperature are 76.0% and 62.2°C, respectively. The experimental analysis between two sampling notoginseng drying suggests that the solar drying is very effective, and the drying time has been shorten to about 440 minutes from 990 minutes of the traditional drying by sun. It is also observed that using the solar drying system notoginseng has a higher quality than traditional drying method.


1989 ◽  
Author(s):  
J. Balsavich ◽  
F.E. Becker ◽  
L.A. Smolensky
Keyword(s):  

1998 ◽  
Vol 59 (1) ◽  
pp. 63-71 ◽  
Author(s):  
David B Ampratwum ◽  
Atsu S.S Dorvlo
Keyword(s):  

2018 ◽  
Vol 215 ◽  
pp. 384-395 ◽  
Author(s):  
Magdalena Nemś ◽  
Jacek Kasperski ◽  
Artur Nemś ◽  
Anna Bać

Author(s):  
Agarwal A. ◽  
Seretse O.M ◽  
Letsatsi M.T ◽  
Maele L.T ◽  
Koketso D

Sign in / Sign up

Export Citation Format

Share Document