scholarly journals A theoretical study of the effects of different heating loads on the exergy performance of water-based and air-based space heating systems in buildings

Energy ◽  
2022 ◽  
Vol 238 ◽  
pp. 122009
Author(s):  
Ongun B. Kazanci ◽  
Masanori Shukuya
2016 ◽  
Vol 99 ◽  
pp. 119-129 ◽  
Author(s):  
Ongun B. Kazanci ◽  
Masanori Shukuya ◽  
Bjarne W. Olesen

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1321
Author(s):  
Yu-Jin Hwang ◽  
Jae-Weon Jeong

The objective of this research is to establish an appropriate operating strategy for a radiant floor heating system that additionally has an air source heat pump for providing convective air heating separately, leading to heating energy saving and thermal comfort in residential buildings. To determine the appropriate optimal operating ratio of each system taking charge of combined heating systems, the energy consumption of the entire system was drawn, and the adaptive floor surface temperature was reviewed based on international standards and literature on thermal comfort. For processing heating loads with radiant floor heating and air source heating systems, the heating capacity of radiant floor heating by 1 °C variation in floor temperature was calculated, and the remaining heating load was handled by the heating capacity of the convective air heating heat pump. Consequently, when the floor temperature was 25 °C, all heating loads were removed by radiant floor heating only. When handling all heating loads with the heat pump, 59.2% less energy was used compared with radiant floor heating only. Considering the local discomfort of the soles of the feet, the floor temperature is expected to be suitable at 22–23 °C, and 31.5–37.6% energy saving compared with those of radiant floor heating alone were confirmed.


2012 ◽  
Vol 37 (4) ◽  
pp. 19-28
Author(s):  
Rob Marsh

Climate change means that buildings must greatly reduce their energy consumption. It is however paradoxical that climate mitigation in Denmark has created negative energy and indoor climate problems in housing that may be made worse by climate change. A literature review has been carried out of housing schemes where climate mitigation was sought through reduced space heating demand, and it is shown that extensive problems with overheating exist. A theoretical study of regulative and design strategies for climate mitigation in new build housing has therefore been carried out, and it is shown that reducing space heating with high levels of thermal insulation and passive solar energy results in overheating and a growing demand for cooling. Climate change is expected to reduce space heating and increase cooling demand in housing. An analysis of new build housing using passive solar energy as a climate mitigation strategy has therefore been carried out in relation to future climate change scenarios. It is shown that severe indoor comfort problems can occur, questioning the relevance of passive solar energy as a climate mitigation strategy. In conclusion, a theoretical study of the interplay between climate adaptation and mitigation strategies is carried out, with a cross-disciplinary focus on users, passive design and active technologies. It is shown that the cumulative use of these strategies can create an adaptation buffer, thus eliminating problems with overheating and reducing energy consumption. New build housing should therefore be designed in relation to both current and future climate scenarios to show that the climate mitigation strategies ensure climate adaptation.


Solar Energy ◽  
1984 ◽  
Vol 32 (3) ◽  
pp. 349-356 ◽  
Author(s):  
Jong Ho Lee ◽  
Georges Le Palec ◽  
Michel Daguenet

Seasonal and annual performance data are available on only a limited number of the several thousand solar space heating systems now in operation. The emerging information indicates that most of the heat required in buildings can be supplied by solar energy delivered from flat-plate collectors and stored overnight in tanks of water and bins of rock pebbles. Numerous mechanical and operational problems, mainly in liquid collection and storage systems, demand attention. Annual costs of solar heating equipment and its installation usually exceed current values of energy savings, but fuel prices are expected to escalate at rates which often favour solar purchase today. Detailed performance data on several types of solar heating and cooling systems in buildings of identical design are presented, compared and interpreted. Maintenance and repair requirements are noted and contrasted, and forecasts of use in various applications are presented.


Sign in / Sign up

Export Citation Format

Share Document