Effects of foam structure on thermochemical characteristics of porous-filled solar reactor

Energy ◽  
2022 ◽  
Vol 239 ◽  
pp. 122219
Author(s):  
Hao Zhang ◽  
Yong Shuai ◽  
Bachirou Guene Lougou ◽  
Boshu Jiang ◽  
Dazhi Yang ◽  
...  
2019 ◽  
Author(s):  
Joppe Rutten ◽  
Jens Verschoren ◽  
Nesrin Ozalp ◽  
Cédric Ophoff ◽  
David Moens

2008 ◽  
Vol 26 (3) ◽  
pp. 449-453 ◽  
Author(s):  
H. Yang ◽  
K. Nagai ◽  
M. Nakai ◽  
T. Norimatsu

AbstractCapsules with a thin aerogel shell were prepared by the OO/W/OIemulsion process. (Phloroglucinol carboxylic acid)/formaldehyde (PF) was used as the water phase (W) solution to form the shell of the capsule. PF is a linear polymer prepared from phloroglucinol carboxylic acid. The viscosity of the PF solution can reach a high level of 9×10−5m2/s without gelation while resorcinol/formaldehyde (RF) gelates at ~3–4×10−5m2/s. Using the viscous PF solution, capsule with a 17 µm gel shell was fabricated. This thickness satisfies the specification of the first phase of Fast Ignition Realization Experiment (FIREX-I) at Osaka University. When PF gel was extracted to remove the organic solvent, shrinkage of 9% occurred. The final density of the PF aerogel was 145 mg/cm3. Both the shell thickness and density can satisfy the specification of FIREX-I. The pore size of the PF aerogel was less than 100 nm while that of RF was 200–500 nm. The SEM showed that PF had particle-like foam structure while RF had fibrous-like foam structure.


Author(s):  
Junfei Guo ◽  
Zhan Liu ◽  
Zhao Du ◽  
Jiabang Yu ◽  
Xiaohu Yang ◽  
...  

2015 ◽  
Vol 69 ◽  
pp. 1810-1818 ◽  
Author(s):  
P. Parthasarathy ◽  
P. Le Clercq

Author(s):  
Xiaohuan Liu ◽  
Shuai Wang ◽  
Yanxiang Du ◽  
Min Zheng ◽  
Shiliang Yang ◽  
...  

Author(s):  
Nicolas Piatkowski ◽  
Christian Wieckert ◽  
Aldo Steinfeld

Gasification of coal, biomass, and other carbonaceous materials for high-quality syngas production is considered using concentrated solar energy as the source of high-temperature process heat. The solar reactor consists of two cavities separated by a SiC-coated graphite plate, with the upper one serving as the radiative absorber and the lower one containing the reacting packed bed that shrinks as the reaction progresses. A 5-kW prototype reactor with an 8 cm-depth, 14.3 cm-diameter cylindrical bed was fabricated and tested in the High-Flux Solar Simulator at PSI, subjected to solar flux concentrations up to 2300 suns. Beech charcoal was used as a model feedstock and converted into high-quality syngas (predominantly H2 and CO) with packed-bed temperatures up to 1500 K, an upgrade factor of the calorific value of 1.33, and an energy conversion efficiency of 29%. Pyrolysis was evident through the evolution of higher gaseous hydrocarbons during heating of the packed bed. The engineering design, fabrication, and testing of the solar reactor are described.


1996 ◽  
Vol 36 (21) ◽  
pp. 2645-2662 ◽  
Author(s):  
Saeed Doroudiani ◽  
Chul B. Park ◽  
Mark T. Kortschot

Sign in / Sign up

Export Citation Format

Share Document