Effect of shroud on the energy extraction performance of oscillating foil

Energy ◽  
2021 ◽  
pp. 122387
Author(s):  
W. Jiang ◽  
Z.Y. Mei ◽  
F. Wu ◽  
A. Han ◽  
Y.H. Xie ◽  
...  
2021 ◽  
Vol 228 ◽  
pp. 108901
Author(s):  
Xiao-Dong Bai ◽  
Ji-Sheng Zhang ◽  
Jin-Hai Zheng ◽  
Yong Wang

2021 ◽  
Vol 809 (1) ◽  
pp. 012001
Author(s):  
Hao Yang ◽  
Guanghua He ◽  
Weijie Mo ◽  
Wei Wang

1994 ◽  
Vol 274 ◽  
pp. 1-21 ◽  
Author(s):  
R. Gopalkrishnan ◽  
M. S. Triantafyllou ◽  
G. S. Triantafyllou ◽  
D. Barrett

It is shown experimentally that free shear flows can be substantially altered through direct control of the large coherent vortices present in the flow.First, flow-visualization experiments are conducted in Kalliroscope fluid at Reynolds number 550. A foil is placed in the wake of a D-section cylinder, sufficiently far behind the cylinder so that it does not interfere with the vortex formation process. The foil performs a heaving and pitching oscillation at a frequency close to the Strouhal frequency of the cylinder, while cylinder and foil also move forward at constant speed. By varying the phase of the foil oscillation, three basic interaction modes are identified. (i) Formation of a street of pairs of counter-rotating vortices, each pair consisting of one vortex from the initial street of the cylinder and one vortex shed by the foil. The width of the wake is then substantially increased. (ii) Formation of a street of vortices with reduced or even reverse circulation compared to that of oncoming cylinder vortices, through repositioning of cylinder vortices by the foil and interaction with vorticity of the opposite sign shed from the trailing edge of the foil. (iii) Formation of a street of vortices with circulation increased through merging of cylinder vortices with vortices of the same sign shed by the foil. In modes (ii) and (iii) considerable repositioning of the cylinder vortices takes place immediately behind the foil, resulting in a regular or reverse Kármán street. The formation of these three interaction patterns is achieved only for specific parametric values; for different values of the parameters no dominant stable pattern emerges.Subsequently, the experiments are repeated in a different facility at larger scale, resulting in Reynolds number 20000, in order to obtain force and torque measurements. The purpose of the second set of experiments is to assess the impact of flow control on the efficiency of the oscillating foil, and hence investigate the possibility of energy extraction. It is found that the efficiency of the foil depends strongly on the phase difference between the oscillation of the foil and the arrival of cylinder vortices. Peaks in foil efficiency are associated with the formation of a street of weakened vortices and energy extraction by the foil from the vortices of the vortex street.


2020 ◽  
Author(s):  
Yulu Wang ◽  
Di Zhang ◽  
Yonghui Xie

Abstract An experiment facility of parallel-foil turbine is proposed in this study. The flow field around foils at different reduced frequency, pitching amplitude and plunging amplitude is measured by 2D Particle Image Velocimetry (PIV) system. And the energy extraction performance at different motion parameters is analyzed numerically. The comparison between experimental and numerical flow field is conducted at different reduced frequency. The evolution of flow field and the aerodynamic force with different pitching amplitude and plunging amplitude are discussed. The effect of pitching amplitude and plunging amplitude on energy extraction performance is obtained. Results indicate that the pitching amplitude can increase the range and the strength of acceleration area by varying the pitching velocity and the effective angle of attack. The optimal extraction performance appears at 70°. Due to the increase in plunging amplitude, the energy extraction performance and efficiency increase gradually. The optimal plunging amplitude is 1.0. The pitching amplitude and the plunging amplitude influence the power output by affecting the vortex shedding and the flow reattachment in oscillation process.


Energy ◽  
2021 ◽  
pp. 122940
Author(s):  
Yubing Zhang ◽  
Yong Wang ◽  
Yudong Xie ◽  
Guang Sun ◽  
Jiazhen Han

Sign in / Sign up

Export Citation Format

Share Document