scholarly journals Energy Extraction Performance of Tandem Ground-effect Hydrofoils

2021 ◽  
Vol 809 (1) ◽  
pp. 012001
Author(s):  
Hao Yang ◽  
Guanghua He ◽  
Weijie Mo ◽  
Wei Wang
Author(s):  
Wei Jiang ◽  
Yulu Wang ◽  
Yonghui Xie ◽  
Di Zhang

A new concept of power generator using two oscillating foils in parallel configuration to extract energy from fluid is proposed and numerically tested in the present study. The theoretical performance of the turbine in this form is investigated through unsteady two-dimensional laminar-flow Navier-Stokes simulations. The effect of the interaction between the two foils is studied at different pitching amplitudes and phase differences between the two foils. The energy extraction performance, instantaneous force coefficients and flow details are compared between single foil and dual foils, and thus the mechanism of performance improvement by wing-in-ground effect is revealed. Two different kinds of asymmetric sinusoidal motions are utilized to further improve the performance of the turbine. Numerical results indicate that anti-phase mode can achieve higher power coefficient than the in-phase mode. The contracted passage under anti-phase mode helps produce larger lift force and power coefficient. The maximum power coefficient per foil for anti-phase dual foils is 1.4% higher than that of single foil. The asymmetric sinusoidal pitching motion in phase can improve the synchronization between plunging velocity and lift force and thus further enhance the energy extraction performance by 1.3%. Besides, the pitching motion with asymmetric amplitude also can increase the power coefficient somehow, but the improvement is very limited.


2021 ◽  
Vol 228 ◽  
pp. 108901
Author(s):  
Xiao-Dong Bai ◽  
Ji-Sheng Zhang ◽  
Jin-Hai Zheng ◽  
Yong Wang

Energy ◽  
2021 ◽  
pp. 122387
Author(s):  
W. Jiang ◽  
Z.Y. Mei ◽  
F. Wu ◽  
A. Han ◽  
Y.H. Xie ◽  
...  

2020 ◽  
Author(s):  
Yulu Wang ◽  
Di Zhang ◽  
Yonghui Xie

Abstract An experiment facility of parallel-foil turbine is proposed in this study. The flow field around foils at different reduced frequency, pitching amplitude and plunging amplitude is measured by 2D Particle Image Velocimetry (PIV) system. And the energy extraction performance at different motion parameters is analyzed numerically. The comparison between experimental and numerical flow field is conducted at different reduced frequency. The evolution of flow field and the aerodynamic force with different pitching amplitude and plunging amplitude are discussed. The effect of pitching amplitude and plunging amplitude on energy extraction performance is obtained. Results indicate that the pitching amplitude can increase the range and the strength of acceleration area by varying the pitching velocity and the effective angle of attack. The optimal extraction performance appears at 70°. Due to the increase in plunging amplitude, the energy extraction performance and efficiency increase gradually. The optimal plunging amplitude is 1.0. The pitching amplitude and the plunging amplitude influence the power output by affecting the vortex shedding and the flow reattachment in oscillation process.


Energy ◽  
2021 ◽  
pp. 122940
Author(s):  
Yubing Zhang ◽  
Yong Wang ◽  
Yudong Xie ◽  
Guang Sun ◽  
Jiazhen Han

Author(s):  
Alexander D. Totpal ◽  
Firas F. Siala ◽  
James A. Liburdy

The aerodynamic performance of an oscillating pitching and plunging foil operating in the energy harvesting mode is experimentally investigated. Experiments are conducted in a closed-loop recirculating wind tunnel at Re of 24,000 to 48,000, and reduced frequencies (k) of 0.04 to 0.08. Foil kinematics are varied through the following parameter space: heaving amplitude of 0.3c, pitching amplitudes of θ0 = 45° to 75°, as well as phase lag between sinusoidal pitching and heaving motions of Φ = 30° to 120°. Aerodynamic force measurements are collected to show the energy extraction performance (power coefficient and efficiency) of the foil. Coupled with the force measurements, flow fields are collected using particle image velocimetry. The flow field characteristics are used to supplement the force results, shedding light into flow features that contribute to increased energy extraction at these k values. In addition, inertia-induced passive chord-wise flexibility at the leading edge (LE) of the foil is investigated in order to assess its feasibility in this application. Results indicate that favorable performance occurs near θ0 = 45°, Φ = 90° and k = 0.08. When k is decreased (through increased U∞) to 0.04, overall extraction performance becomes insensitive to θ0 and Φ. This is supported by the flow field measurements, which show premature leading edge vortex (LEV) evolution and detachment from the foil surface. Although overall performance was reduced with the passive LE flexibility, these results indicate that a proper tuning of the LE may result in a delay of the LEV detachment time, yielding increased energy harvesting at this otherwise inefficient operating parameter space.


Sign in / Sign up

Export Citation Format

Share Document