Energy extraction performance of a flapping wing with active elastic airbag deformation at the leading edge

2021 ◽  
Vol 228 ◽  
pp. 108901
Author(s):  
Xiao-Dong Bai ◽  
Ji-Sheng Zhang ◽  
Jin-Hai Zheng ◽  
Yong Wang
Author(s):  
Alexander D. Totpal ◽  
Firas F. Siala ◽  
James A. Liburdy

The aerodynamic performance of an oscillating pitching and plunging foil operating in the energy harvesting mode is experimentally investigated. Experiments are conducted in a closed-loop recirculating wind tunnel at Re of 24,000 to 48,000, and reduced frequencies (k) of 0.04 to 0.08. Foil kinematics are varied through the following parameter space: heaving amplitude of 0.3c, pitching amplitudes of θ0 = 45° to 75°, as well as phase lag between sinusoidal pitching and heaving motions of Φ = 30° to 120°. Aerodynamic force measurements are collected to show the energy extraction performance (power coefficient and efficiency) of the foil. Coupled with the force measurements, flow fields are collected using particle image velocimetry. The flow field characteristics are used to supplement the force results, shedding light into flow features that contribute to increased energy extraction at these k values. In addition, inertia-induced passive chord-wise flexibility at the leading edge (LE) of the foil is investigated in order to assess its feasibility in this application. Results indicate that favorable performance occurs near θ0 = 45°, Φ = 90° and k = 0.08. When k is decreased (through increased U∞) to 0.04, overall extraction performance becomes insensitive to θ0 and Φ. This is supported by the flow field measurements, which show premature leading edge vortex (LEV) evolution and detachment from the foil surface. Although overall performance was reduced with the passive LE flexibility, these results indicate that a proper tuning of the LE may result in a delay of the LEV detachment time, yielding increased energy harvesting at this otherwise inefficient operating parameter space.


2019 ◽  
Vol 7 (11) ◽  
pp. 398
Author(s):  
Xu ◽  
Zhu ◽  
Guan ◽  
Zhan

To improve the energy extraction performance of the oscillating hydrofoil, the lift force that acts on the oscillating hydrofoil is analyzed. The pressure difference between the oscillating hydrofoil‘s opposing surfaces is dominant to generate the lift force. Forming and shedding of the leading-edge vortex from the hydrofoil surface determines the pressure difference between the opposing surfaces of the oscillating hydrofoil. In this paper, the hydrofoil with different chord flexibility coefficients and maximum offset at the trailing edge are analyzed to obtain the power coefficient, lift coefficient, and moment coefficient of the oscillating hydrofoil. The influence mechanism of chord-wise deformation of the oscillating hydrofoil on the energy extraction performance is explored. According to the Kutta–Joukowsky condition and the Stokes’ theorem, the relationship between the attached vortex on the hydrofoil and the surface pressure of the hydrofoil, the surface pressure difference of the hydrofoil, and the lift force that acts on the hydrofoil are investigated. By quantifying the vortex intensity, the ascending-shedding process of the attached vortex on the hydrofoil is characterized. Finally, the complete influence chain among the chord-wise flexure, the attached vortex on the hydrofoil, and the energy extraction performance of the oscillating hydrofoil is established.


2021 ◽  
Vol 809 (1) ◽  
pp. 012001
Author(s):  
Hao Yang ◽  
Guanghua He ◽  
Weijie Mo ◽  
Wei Wang

Energy ◽  
2021 ◽  
pp. 122387
Author(s):  
W. Jiang ◽  
Z.Y. Mei ◽  
F. Wu ◽  
A. Han ◽  
Y.H. Xie ◽  
...  

2020 ◽  
Author(s):  
Yulu Wang ◽  
Di Zhang ◽  
Yonghui Xie

Abstract An experiment facility of parallel-foil turbine is proposed in this study. The flow field around foils at different reduced frequency, pitching amplitude and plunging amplitude is measured by 2D Particle Image Velocimetry (PIV) system. And the energy extraction performance at different motion parameters is analyzed numerically. The comparison between experimental and numerical flow field is conducted at different reduced frequency. The evolution of flow field and the aerodynamic force with different pitching amplitude and plunging amplitude are discussed. The effect of pitching amplitude and plunging amplitude on energy extraction performance is obtained. Results indicate that the pitching amplitude can increase the range and the strength of acceleration area by varying the pitching velocity and the effective angle of attack. The optimal extraction performance appears at 70°. Due to the increase in plunging amplitude, the energy extraction performance and efficiency increase gradually. The optimal plunging amplitude is 1.0. The pitching amplitude and the plunging amplitude influence the power output by affecting the vortex shedding and the flow reattachment in oscillation process.


Energy ◽  
2021 ◽  
pp. 122940
Author(s):  
Yubing Zhang ◽  
Yong Wang ◽  
Yudong Xie ◽  
Guang Sun ◽  
Jiazhen Han

Author(s):  
Naeem Haider ◽  
Aamer Shahzad ◽  
Muhammad Nafees Mumtaz Qadri ◽  
Syed Irtiza Ali Shah

Micro aerial vehicles using flapping wings are under investigation, as an alternative to fixed-wing and rotary-wing micro aerial vehicles. Such flapping-wing vehicles promise key potential advantages of high thrust, agility, and maneuverability, and have a wide range of applications. These applications include both military and commercial domains such as communication relay, search and rescue, visual reconnaissance, and field search. With the advancement in the computational sciences, developments in flapping-wing micro aerial vehicles have progressed exponentially. Such developments require a careful aerodynamic and aeroelastic design of the flapping wing. Therefore, aerodynamic tools are required to study such designs and configurations. In this paper, the role of several parameters is investigated, including the types of flapping wings, the effect of the kinematics and wing geometry (shape, configuration, and structural flexibility) on performance variables such as lift, drag, thrust, and efficiency in various modes of flight. Kinematic variables have a significant effect on the performance of the flapping wing. For instance, a high flap amplitude and pitch rotation, which supports the generation of the strong leading-edge vortex, generates higher thrust. Likewise, wing shape, configuration, and structural flexibility are shown to have a large impact on the performance of the flapping wing. The wing with optimum flexibility maximizes thrust where highly flexible wings lead to performance degradation due to change in the effective angle of attack. This study shows that the development of the flexible flapping wing with performance capabilities similar to those of natural fliers has not yet been achieved. Finally, opportunities for additional research in this field are recommended.


2019 ◽  
Vol 13 (11) ◽  
pp. 1823-1832 ◽  
Author(s):  
Bing Zhu ◽  
Wei Zhang ◽  
Yun Huang

Sign in / Sign up

Export Citation Format

Share Document