scholarly journals Active vorticity control in a shear flow using a flapping foil

1994 ◽  
Vol 274 ◽  
pp. 1-21 ◽  
Author(s):  
R. Gopalkrishnan ◽  
M. S. Triantafyllou ◽  
G. S. Triantafyllou ◽  
D. Barrett

It is shown experimentally that free shear flows can be substantially altered through direct control of the large coherent vortices present in the flow.First, flow-visualization experiments are conducted in Kalliroscope fluid at Reynolds number 550. A foil is placed in the wake of a D-section cylinder, sufficiently far behind the cylinder so that it does not interfere with the vortex formation process. The foil performs a heaving and pitching oscillation at a frequency close to the Strouhal frequency of the cylinder, while cylinder and foil also move forward at constant speed. By varying the phase of the foil oscillation, three basic interaction modes are identified. (i) Formation of a street of pairs of counter-rotating vortices, each pair consisting of one vortex from the initial street of the cylinder and one vortex shed by the foil. The width of the wake is then substantially increased. (ii) Formation of a street of vortices with reduced or even reverse circulation compared to that of oncoming cylinder vortices, through repositioning of cylinder vortices by the foil and interaction with vorticity of the opposite sign shed from the trailing edge of the foil. (iii) Formation of a street of vortices with circulation increased through merging of cylinder vortices with vortices of the same sign shed by the foil. In modes (ii) and (iii) considerable repositioning of the cylinder vortices takes place immediately behind the foil, resulting in a regular or reverse Kármán street. The formation of these three interaction patterns is achieved only for specific parametric values; for different values of the parameters no dominant stable pattern emerges.Subsequently, the experiments are repeated in a different facility at larger scale, resulting in Reynolds number 20000, in order to obtain force and torque measurements. The purpose of the second set of experiments is to assess the impact of flow control on the efficiency of the oscillating foil, and hence investigate the possibility of energy extraction. It is found that the efficiency of the foil depends strongly on the phase difference between the oscillation of the foil and the arrival of cylinder vortices. Peaks in foil efficiency are associated with the formation of a street of weakened vortices and energy extraction by the foil from the vortices of the vortex street.

TAPPI Journal ◽  
2010 ◽  
Vol 9 (11) ◽  
pp. 15-21
Author(s):  
PHILIPPE MARTINEZ ◽  
MARTINE RUEFF ◽  
DAVID GUÉRIN ◽  
VÉRONIQUE MORIN

Curtain coating is a contactless process with the potential for increased quality and productivity for coaters. Nevertheless, this demanding process requires a perfectly stable curtain to obtain good coverage. Problems can originate from the internal flow when the fluid goes through cavities and slots before reaching the inclined plane. Three-dimensional computational fluid dynamics simulations were performed in the manifold of a laboratory curtain coater to analyze the phenomena taking place in the first cavity, determine the causes of defects, and propose potential solutions. Reynolds number is a relevant parameter for Newtonian and non-Newtonian fluids and increasing it leads to disturbances in the manifold. The power law index also significantly affects flow uniformity, because its decrease leads to perturbations. Finally, yield shear stress has no effect on vortex formation for coating colors. To maintain vortex-free operation, the Reynolds number at the inlet must remain below a critical value (equal to 20 with the studied geometry), whatever the fluid. Geometrical changes were simulated with a higher radius of the inlet pipe or an end-fed manifold, resulting in improved flow uniformity. Simulation results were validated using flow visualization experiments with tracers using a transparent replica of the coater.


Shock Waves ◽  
2021 ◽  
Author(s):  
C. Garbacz ◽  
W. T. Maier ◽  
J. B. Scoggins ◽  
T. D. Economon ◽  
T. Magin ◽  
...  

AbstractThe present study aims at providing insights into shock wave interference patterns in gas flows when a mixture different than air is considered. High-energy non-equilibrium flows of air and $$\hbox {CO}_2$$ CO 2 –$$\hbox {N}_2$$ N 2 over a double-wedge geometry are studied numerically. The impact of freestream temperature on the non-equilibrium shock interaction patterns is investigated by simulating two different sets of freestream conditions. To this purpose, the SU2 solver has been extended to account for the conservation of chemical species as well as multiple energies and coupled to the Mutation++ library (Multicomponent Thermodynamic And Transport properties for IONized gases in C++) that provides all the necessary thermochemical properties of the mixture and chemical species. An analysis of the shock interference patterns is presented with respect to the existing taxonomy of interactions. A comparison between calorically perfect ideal gas and non-equilibrium simulations confirms that non-equilibrium effects greatly influence the shock interaction patterns. When thermochemical relaxation is considered, a type VI interaction is obtained for the $$\hbox {CO}_2$$ CO 2 -dominated flow, for both freestream temperatures of 300 K and 1000 K; for air, a type V six-shock interaction and a type VI interaction are obtained, respectively. We conclude that the increase in freestream temperature has a large impact on the shock interaction pattern of the air flow, whereas for the $$\hbox {CO}_2$$ CO 2 –$$\hbox {N}_2$$ N 2 flow the pattern does not change.


Author(s):  
Johannes Ruhland ◽  
Christian Breitsamter

AbstractThis study presents two-dimensional aerodynamic investigations of various high-lift configuration settings concerning the deflection angles of droop nose, spoiler and flap in the context of enhancing the high-lift performance by dynamic flap movement. The investigations highlight the impact of a periodically oscillating trailing edge flap on lift, drag and flow separation of the high-lift configuration by numerical simulations. The computations are conducted with regard to the variation of the parameters reduced frequency and the position of the rotational axis. The numerical flow simulations are conducted on a block-structured grid using Reynolds Averaged Navier Stokes simulations employing the shear stress transport $$k-\omega $$ k - ω turbulence model. The feature Dynamic Mesh Motion implements the motion of the oscillating flap. Regarding low-speed wind tunnel testing for a Reynolds number of $$0.5 \times 10^{6}$$ 0.5 × 10 6 the flap movement around a dropped hinge point, which is located outside the flap, offers benefits with regard to additional lift and delayed flow separation at the flap compared to a flap movement around a hinge point, which is located at 15 % of the flap chord length. Flow separation can be suppressed beyond the maximum static flap deflection angle. By means of an oscillating flap around the dropped hinge point, it is possible to reattach a separated flow at the flap and to keep it attached further on. For a Reynolds number of $$20 \times 10^6$$ 20 × 10 6 , reflecting full scale flight conditions, additional lift is generated for both rotational axis positions.


1973 ◽  
Vol 27 (4) ◽  
pp. 431-464 ◽  
Author(s):  
Robert W. Russell

The main hypothesis of this article is that transgovernmental interaction among central banks and finance ministries of industrialized countries was as significant in economic policy formation as intergovernmental interaction. Elite interview data indicate, however, that the international consultative process among deputy central bank governors and deputy finance ministers conformed more closely to the intergovernmental image of international politics than had been expected. Both interaction patterns within the deputies’ consultative group and the impact of international consultations upon national economic policies could be explained moderately well in terms of a unified rational actor model. Examination of the transgovernmental interaction does suggest ways to systematically modify and improve interpretations based upon the rational actor model. In addition, the degree of politicization of issues may prove to be a reliable guide when deciding whether the transgovernmental dimension of an issue requires detailed study.


Author(s):  
Dries Verstraete ◽  
Kjersti Lunnan

Small unmanned aircraft are currently limited to flight ceilings below 20,000 ft due to the lack of an appropriate propulsion system. One of the most critical technological hurdles for an increased flight ceiling of small platforms is the impact of reduced Reynolds number conditions at altitude on the performance of small radial turbomachinery. The current article investigates the influence of Reynolds number on the efficiency and pressure ratio of two small centrifugal compressor impellers using a one-dimensional meanline performance analysis code. The results show that the efficiency and pressure ratio of the 60 mm baseline compressor at the design rotational speed drops with 6–9% from sea-level to 70,000 ft. The impact on the smaller 20 mm compressor is slightly more pronounced and amounts to 6–10%. Off-design changes at low rotational speeds are significantly higher and can amount to up to 15%. Whereas existing correlations show a good match for the efficiency drop at the design rotational speed, they fail to predict efficiency changes with rotational speed. A modified version is therefore proposed.


Energy ◽  
2021 ◽  
pp. 122387
Author(s):  
W. Jiang ◽  
Z.Y. Mei ◽  
F. Wu ◽  
A. Han ◽  
Y.H. Xie ◽  
...  

1972 ◽  
Vol 39 (4) ◽  
pp. 883-890 ◽  
Author(s):  
D. O. Rockwell

A planar jet was subjected to transverse periodic disturbances of appropriate dimension-less frequency such that the vortex growth of the jet could be controlled for a wide range of jet Reynolds number (1860 to 10,800). Changes in the apparent time mean characteristics of the jet in its initial formation region, due to the applied disturbances, are related to the behavior of vortices. The processes of vortex formation, growth, and coalescence in the initial formation region are portrayed. The alterations of these processes as a function of the dimensionless applied disturbance are classed into regimes identified with respect to the natural breakdown state of the jet.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Mehran Tadjfar ◽  
Ehsan Asgari

We have studied the influence of a tangential blowing jet in dynamic stall of a NACA0012 airfoil at Reynolds number of 1 × 106, for active flow control (AFC) purposes. The airfoil was oscillating between angles of attack (AOA) of 5 and 25 deg about its quarter-chord with a sinusoidal motion. We have utilized computational fluid dynamics to investigate the impact of jet location and jet velocity ratio on the aerodynamic coefficients. We have placed the jet location upstream of the counter-clockwise (CCW) vortex which was formed during the upstroke motion near the leading-edge; we have also considered several other locations nearby to perform sensitivity analysis. Our results showed that placing the jet slot within a very small range upstream of the CCW vortex had tremendous effects on both lift and drag, such that maximum drag was reduced by 80%. There was another unique observation: placing the jet at separation point led to an inverse behavior of drag hysteresis curve in upstroke and downstroke motions. Drag in downstroke motion was significantly lower than upstroke motion, whereas in uncontrolled case the converse was true. Lift was significantly enhanced during both upstroke and downstroke motions. By investigating the pressure coefficients, it was found that flow control had altered the distribution of pressure over the airfoil upper surface. It caused a reduction in pressure difference between upper and lower surfaces in the rear part, while substantially increased pressure difference in the front part of the airfoil.


Author(s):  
Lifu Wang ◽  
Dongyan Shi ◽  
Zhixun Yang ◽  
Guangliang Li ◽  
Chunlong Ma ◽  
...  

Abstract To further investigate and improve the cleaning ability of the cavitation nozzle, this paper proposes a new model that is based on the Helmholtz nozzle and with the quadratic equation curve as the outer contour of the cavitation chamber. First, the numerical simulation of the flow field in the nozzle chamber was conducted using FLUENT software to analyze and compare the impact of the curve parameters and Reynolds number on the cleaning effect. Next, the flow field was captured by a high-speed camera in order to study the cavitation cycle and evolution process. Then, experiments were performed to compare the cleaning effect of the new nozzle with that of the Helmholtz nozzle. The study results demonstrate that effective cavitation does not occur when the diameter of the cavitation chamber is too large. For the new nozzle, with the increase of the Reynolds number, the degree of cavitation in the chamber first increases and then decreases; the cleaning effect is much better than that of a traditional Helmholtz nozzle under the same conditions; the nozzle has the best cleaning effect for the stand-off distance of 300 mm.


Sign in / Sign up

Export Citation Format

Share Document