Battery thermal management of intelligent-connected electric vehicles at low temperature based on NMPC

Energy ◽  
2021 ◽  
pp. 122571
Author(s):  
Yan Ma ◽  
Hao Ding ◽  
Yongqin Liu ◽  
Jinwu Gao
Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5980 ◽  
Author(s):  
James Jeffs ◽  
Truong Quang Dinh ◽  
Widanalage Dhammika Widanage ◽  
Andrew McGordon ◽  
Alessandro Picarelli

Electric vehicles (EVs) experience a range reduction at low temperatures caused by the impact of cabin heating and a reduction in lithium ion performance. Heat pump equipped vehicles have been shown to reduce heating ventilation and air conditioning (HVAC) consumption and improve low ambient temperature range. Heating the electric battery, to improve its low temperature performance, leads to a reduction in heat availability for the cabin. In this paper, dynamic programming is used to find the optimal battery heating trajectory which can optimise the vehicle’s control for either cabin comfort or battery performance and, therefore, range. Using the strategy proposed in this research, a 6.2% increase in range compared to no battery heating and 5.5% increase in thermal comfort compared to full battery heating was achieved at an ambient temperature at −7 °C.


2021 ◽  
Vol 494 ◽  
pp. 229727
Author(s):  
Xingwang Tang ◽  
Qin Guo ◽  
Ming Li ◽  
Changhua Wei ◽  
Zhiyao Pan ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5711
Author(s):  
Waseem Raza ◽  
Gwang Soo Ko ◽  
Youn Cheol Park

The life and efficiency of electric vehicle batteries are susceptible to temperature. The impact of cold climate dramatically decreases battery life, while at the same time increasing internal impedance. Thus, a battery thermal management system (BTMS) is vital to heat and maintain temperature range if the electric vehicle’s batteries are operating in a cold climate. This paper presents an induction heater-based battery thermal management system that aims to ensure thermal safety and prolong the life cycle of Lithium-ion batteries (Li-Bs). This study used a standard simulation tool known as GT-Suite to simulate the behavior of the proposed BTMS. For the heat transfer, an indirect liquid heating method with variations in flow rate was considered between Lithium-ion batteries. The battery and cabin heating rate was analyzed using the induction heater powers of 2, 4, and 6 kW at ambient temperatures of −20, −10, and 0 °C. A water and ethylene glycol mixture with a ratio of 50:50 was considered as an operating fluid. The findings reveal that the thermal performance of the proposed system is generally increased by increasing the flow rate and affected by the induction heater capacity. It is evident that at −20 °C with 27 LPM and 6 kW heater capacity, the maximum heat transfer rate is 0.0661 °C/s, whereas the lowest is 0.0295 °C/s with 2 kW heater capacity. Furthermore, the proposed BTMS could be a practical approach and help to design the thermal system for electric vehicles in the future.


Sign in / Sign up

Export Citation Format

Share Document