Dynamic behaviors of tapered bi-directional functionally graded beams with various boundary conditions under action of a moving harmonic load

2019 ◽  
Vol 104 ◽  
pp. 225-239 ◽  
Author(s):  
Yang Yang ◽  
Kou Kunpang ◽  
ChiChiu Lam ◽  
VaiPan Iu
Author(s):  
Nastaran Shahmansouri ◽  
Mohammad Mohammadi Aghdam ◽  
Kasra Bigdeli

The present study investigates static analyses of moderately thick FG plates. Using the First Order Shear Deformation Theory (FSDT), functionally graded plates subjected to transversely distributed loading with various boundary conditions are studied. Effective mechanical properties which vary from one surface of the plate to the other assumed to be defined by a power law form of distribution. Different ceramic-metal sets of materials are studied. Solution of the governing equations, including five equilibrium and eight constitutive equations, is obtained by the Extended Kantorovich Method (EKM). The system of thirteen Partial Differential Equations (PDEs) in terms of displacements, rotations, force and moment resultants are considered as multiplications of separable function of independent variables x and y. Then by successful utilization of the EKM these equations are converted to a double set of ODE systems in terms of x and y. The obtained ODE systems are then solved iteratively until final convergence is achieved. Closed form solution is presented for these ODE sets. It is shown that the method is very stable and provides fast convergence and highly accurate predictions for both thin and moderately thick plates. Comparison of the normal stresses at various points of rectangular plates and deflection of mid-point of the plate are presented and compared with available data in the literature. The effects of the volume fraction exponent n on the behavior of the normalized deflection, moment resultants and stresses of FG plates are also studied. To validate data for analysis fully clamped FG plates, another analysis was carried out using finite element code ANSYS. Close agreement is observed between predictions of the EKM and ANSYS.


2020 ◽  
Vol 20 (05) ◽  
pp. 2050068 ◽  
Author(s):  
Zhengmin Hu ◽  
Kai Zhou ◽  
Yong Chen

In this paper, the sound radiation behaviors of the functionally graded porous (FGP) plate with arbitrary boundary conditions and resting on elastic foundation are studied by means of the modified Fourier series method. It is assumed that a total of three types of porosity distributions are considered in the present study. The material parameters are determined according to the porosity coefficient used to denote the size of pores in the plate. The governing equations of the FGP plate are derived by utilizing the Hamilton’s principle on the basis of the first-order deformation theory (FSDT). Each displacement component of the FGP plate is expanded as the Fourier cosine series combined with auxiliary polynomial functions introduced to enhance the convergence rate of the series expansions. The acoustic response of the FGP plate due to a concentrated harmonic load is calculated by evaluating the Rayleigh integral. Good agreements are attained by comparing the present results with those in available literatures, which show the accuracy and versatility of the developed method in this paper. Finally, the influences of the porosity distribution type, porosity coefficient, boundary condition and elastic foundation on the sound radiation of the FGP plate are analyzed in detail.


2018 ◽  
Vol 10 (04) ◽  
pp. 1850041 ◽  
Author(s):  
Ye Tang ◽  
Tianzhi Yang

In the paper, a novel model of fluid-conveying nanotubes made of bi-directional functionally graded materials is presented for investigating the dynamic behaviors and stability. For the first time, the material properties of the nanotubes along both radical and axial directions are under consideration. Based on Euler–Bernoulli beam and Eringen’s nonlocal elasticity theories, the governing equation of the nanotubes and associated boundary conditions are developed using Hamilton’s principle. Differential quadrature method (DQM) is applied for discretizing the equation to determine the numerical solutions of the nanotubes with different boundary conditions. Numerical examples are presented to examine the effects of the material gradation, nonlocal parameter, and mode order on the dynamics and stability. It is shown that the two-directional materials distribution can significantly change the critical flow velocity, fundamental frequencies and stability. Comparing with traditional one-directional distribution, such 2D is more flexible to tune overall dynamic behaviors, this may provide new avenues for smart pipes.


2016 ◽  
Vol 2016 ◽  
pp. 1-23 ◽  
Author(s):  
Peng Liu ◽  
Kun Lin ◽  
Hongjun Liu ◽  
Rong Qin

A new model for the free transverse vibration of axially functionally graded (FG) tapered Euler-Bernoulli beams is developed through the spline finite point method (SFPM) by investigating the effects of the variation of cross-sectional and material properties along the longitudinal directions. In the proposed method, the beam is discretized with a set of uniformly scattered spline nodes along the beam axis instead of meshes, and the displacement field is approximated by the particularly constructed cubic B-spline interpolation functions with good adaptability for various boundary conditions. Unlike traditional discretization and modeling methods, the global structural stiffness and mass matrices for beams of the proposed model are directly generated after spline discretization without needing element meshes, generation, and assembling. The proposed method shows the distinguished features of high modeling efficiency, low computational cost, and convenience for boundary condition treatment. The performance of the proposed method is verified through numerical examples available in the published literature. All results demonstrate that the proposed method can analyze the free vibration of axially FG tapered Euler-Bernoulli beams with various boundary conditions. Moreover, high accuracy and efficiency can be achieved.


Sign in / Sign up

Export Citation Format

Share Document