An optimal washout filter for motion platform using neural network and fuzzy logic

2022 ◽  
Vol 108 ◽  
pp. 104564
Author(s):  
Mohammad Reza Chalak Qazani ◽  
Houshyar Asadi ◽  
Shady Mohamed ◽  
Chee Peng Lim ◽  
Saeid Nahavandi
2020 ◽  
Vol 69 (10) ◽  
pp. 10446-10456
Author(s):  
Mohammad Reza Chalak Qazani ◽  
Houshyar Asadi ◽  
Shady Mohamed ◽  
Saeid Nahavandi

2012 ◽  
Vol 3 (2) ◽  
pp. 298-300 ◽  
Author(s):  
Soniya P. Chaudhari ◽  
Prof. Hitesh Gupta ◽  
S. J. Patil

In this paper we review various research of journal paper as Web Searching efficiency improvement. Some important method based on sequential pattern Mining. Some are based on supervised learning or unsupervised learning. And also used for other method such as Fuzzy logic and neural network


Author(s):  
Zheng Zhang ◽  
Jianrong Zheng

Taking the crankshaft-rolling bearing system in a certain type of compressor as the research objective, dynamic analysis software is used to conduct detailed dynamic analysis and optimal design under the rated power of the compressor. Using Hertz mathematical formula and the analysis method of the superstatic orientation problem, the relationship expression between the bearing force and deformation of the rolling bearing is solved, and the dynamic analysis model of the elastic crankshaft-rolling bearing system is constructed in the simulation software ADAMS. The weighted average amplitude of the center of the neck between the main bearings is used as the target, and the center line of the compressor cylinder is selected as the design variable. Finally, an example analysis shows that by introducing the fuzzy logic neural network algorithm into the compressor crankshaft-rolling bearing system design, the optimal solution between the design variables and the objective function can be obtained, which is of great significance to the subsequent compressor dynamic design.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3373
Author(s):  
Ludek Cicmanec

The main objective of this paper is to describe a building process of a model predicting the soil strength at unpaved airport surfaces (unpaved runways, safety areas in runway proximity, runway strips, and runway end safety areas). The reason for building this model is to partially substitute frequent and meticulous inspections of an airport movement area comprising the bearing strength evaluation and provide an efficient tool to organize surface maintenance. Since the process of building such a model is complex for a physical model, it is anticipated that it might be addressed by a statistical model instead. Therefore, fuzzy logic (FL) and artificial neural network (ANN) capabilities are investigated and compared with linear regression function (LRF). Large data sets comprising the bearing strength and meteorological characteristics are applied to train the likely model variations to be subsequently compared with the application of standard statistical quantitative parameters. All the models prove that the inclusion of antecedent soil strength as an additional model input has an immense impact on the increase in model accuracy. Although the M7 model out of the ANN group displays the best performance, the M3 model is considered for practical implications being less complicated and having fewer inputs. In general, both the ANN and FL models outperform the LRF models well in all the categories. The FL models perform almost equally as well as the ANN but with slightly decreased accuracy.


Sign in / Sign up

Export Citation Format

Share Document