Reliability design of a reciprocating compressor suction reed valve in a common refrigerator subjected to repetitive pressure loads

2010 ◽  
Vol 17 (4) ◽  
pp. 979-991 ◽  
Author(s):  
Seong-woo Woo ◽  
Dennis L. O’Neal ◽  
Michael Pecht
2021 ◽  
Vol 3 (1) ◽  
pp. 14
Author(s):  
Seongwoo Woo ◽  
Dennis L. O’Neal ◽  
Samson Mekbib Atnaw ◽  
Muluneh Mekonnen Tulu

This paper suggests parametric accelerated life testing (ALT) as a systematic reliability technique to generate the reliability quantitative (RQ) specification such as mission cycle for identifying design flaws in mechanical systems as exerting the accelerated load, defined as the reverse of stress ratio, R. Parametric ALT therefore is a procedure to improve the fatigue for mechanical products subjected to repetitive loading. It includes: (1) a system BX lifetime shaped on the parametric ALT plan; (2) a fatigue failure and design; (3) tailored ALTs with alternatives; and (4) an assessment of whether the design(s) of the product attains the targeted BX lifetime. A BX life ideas, a life-stress model, and a sample size formulation for parametric ALT are proposed. A reciprocating compressor in a domestic refrigerator is utilized to explain this methodology. The compressor was subjected to repetitive impact loading due to the pressure difference between condenser and evaporator, which results in the compressor field failure. To analyze and conduct parametric ALTs, as mass/energy balance was utilized on the vapor-compression refrigerating cycle, a simple pressure loading of the compressor in operating the refrigerator was investigated. At the first ALT, the compressor was locked due to the fractured suction reed valve made of Sandvik 20C carbon steel (1 C, 0.25 Si, 0.45 Mn). The dominant failure modes of the suction reed valve in the parametric ALTs were established to be very close to that of the fractured product from the marketplace. The root cause of the fatigue failure of the suction reed valve was an amount of overlap between the suction reed valve and the valve plate in combination of repeated pressure loading in the compressor. To supply sufficient mechanical strength, the design faults were altered by the trespan dimensions tumbling process, a ball peening and brushing process for the valve plate. At the second ALT, a compressor was locked due to the intrusion between the crankshaft and the thrust washer. The corrective action plan was to give heat treat the surface of crankshaft made of cast iron (0.45 C, 0.25 Si, 0.8 Mn, 0.03 P). After these alternations, there were no issues at the third ALT. The lifetime of the compressor was ensured to have B1 life 10 years.


Author(s):  
H. Ezzat Khalifa ◽  
Xin Liu

Abstract The presence of oil on the suction valve of a reciprocating compressor has long been known to be responsible for the so-called valve stiction phenomenon. With stiction, the opening of the valve is delayed until later in the suction stroke, which results in a reduction in volumetric efficiency and increases the probability of valve failure. In this paper, a model is presented for analyzing the dynamic behavior of a round reed valve in the presence of oil. It is shown that the primary reason for stiction is the viscous force arising from dilating the oil film between the valve and its seat. This dilation takes place as the cylinder pressure on one side of the valve reed falls below the suction pressure in the intake plenum upstream of the valve. The viscous force delays the valve opening until later in the suction stroke. Because the film dilation resistance is directly proportional to the oil viscosity and decreases rapidly as the film thickens, the film eventually breaks and the valve begins to accelerate rapidly until it impacts the valve stop. The delayed rapid release of the valve and the associated impact are shown to subject the valve to much higher forces than would be experienced without the effect of stiction. The relative effect of oil viscosity and valve/seat contact area on valve force is presented for a representative reciprocating compressor equipped with suction valves.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1261
Author(s):  
Seongwoo Woo ◽  
Dennis L. O’Neal

This study demonstrates the use of parametric accelerated life testing (ALT) as a way to recognize design defects in mechanical products in creating a reliable quantitative (RQ) specification. It covers: (1) a system BX lifetime that X% of a product population fails, created on the parametric ALT scheme, (2) fatigue and redesign, (3) adapted ALTs with design alternations, and (4) an evaluation of whether the system design(s) acquires the objective BX lifetime. A life-stress model and a sample size formulation, therefore, are suggested. A refrigerator compressor is used to demonstrate this method. Compressors subjected to repetitive impact loading were failing in the field. To analyze the pressure loading of the compressor and carry out parametric ALT, a mass/energy balance on the vapor-compression cycle was examined. At the first ALT, the compressor failed due to a cracked or fractured suction reed valve made of Sandvik 20C carbon steel (1 wt% C, 0.25 wt% Si, 0.45 wt% Mn). The failure modes of the suction reed valves were similar to those valves returned from the field. The fatigue failure of the suction reed valves came from an overlap between the suction reed valve and the valve plate in combination with the repeated pressure loading. The problematic design was modified by the trespan dimensions, tumbling process, a ball peening, and brushing process for the valve plate. At the second ALT, the compressor locked due to the intrusion between the crankshaft and thrust washer. The corrective action plan specified to perform the heat treatment to the exterior of the crankshaft made of cast iron (0.45 wt% C, 0.25 wt% Si, 0.8 wt% Mn, 0.03 wt% P). After these design modifications, there were no troubles during the third ALT. The lifetime of the compressor was secured to have a B1 life of 10 years.


2020 ◽  
Vol 119 ◽  
pp. 119-130
Author(s):  
Andreas Egger ◽  
Raimund Almbauer ◽  
Lukas Dür ◽  
Johann Hopfgartner ◽  
Michael Lang

2011 ◽  
Vol 131 (8) ◽  
pp. 992-999 ◽  
Author(s):  
Tomoyuki Shoji ◽  
Shuichi Nishida ◽  
Toyokazu Ohnishi ◽  
Touma Fujikawa ◽  
Noboru Nose ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document