scholarly journals Reliability Design of Mechanical Systems Such as Compressor Subjected to Repetitive Stresses

2021 ◽  
Vol 3 (1) ◽  
pp. 14
Author(s):  
Seongwoo Woo ◽  
Dennis L. O’Neal ◽  
Samson Mekbib Atnaw ◽  
Muluneh Mekonnen Tulu

This paper suggests parametric accelerated life testing (ALT) as a systematic reliability technique to generate the reliability quantitative (RQ) specification such as mission cycle for identifying design flaws in mechanical systems as exerting the accelerated load, defined as the reverse of stress ratio, R. Parametric ALT therefore is a procedure to improve the fatigue for mechanical products subjected to repetitive loading. It includes: (1) a system BX lifetime shaped on the parametric ALT plan; (2) a fatigue failure and design; (3) tailored ALTs with alternatives; and (4) an assessment of whether the design(s) of the product attains the targeted BX lifetime. A BX life ideas, a life-stress model, and a sample size formulation for parametric ALT are proposed. A reciprocating compressor in a domestic refrigerator is utilized to explain this methodology. The compressor was subjected to repetitive impact loading due to the pressure difference between condenser and evaporator, which results in the compressor field failure. To analyze and conduct parametric ALTs, as mass/energy balance was utilized on the vapor-compression refrigerating cycle, a simple pressure loading of the compressor in operating the refrigerator was investigated. At the first ALT, the compressor was locked due to the fractured suction reed valve made of Sandvik 20C carbon steel (1 C, 0.25 Si, 0.45 Mn). The dominant failure modes of the suction reed valve in the parametric ALTs were established to be very close to that of the fractured product from the marketplace. The root cause of the fatigue failure of the suction reed valve was an amount of overlap between the suction reed valve and the valve plate in combination of repeated pressure loading in the compressor. To supply sufficient mechanical strength, the design faults were altered by the trespan dimensions tumbling process, a ball peening and brushing process for the valve plate. At the second ALT, a compressor was locked due to the intrusion between the crankshaft and the thrust washer. The corrective action plan was to give heat treat the surface of crankshaft made of cast iron (0.45 C, 0.25 Si, 0.8 Mn, 0.03 P). After these alternations, there were no issues at the third ALT. The lifetime of the compressor was ensured to have B1 life 10 years.

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1261
Author(s):  
Seongwoo Woo ◽  
Dennis L. O’Neal

This study demonstrates the use of parametric accelerated life testing (ALT) as a way to recognize design defects in mechanical products in creating a reliable quantitative (RQ) specification. It covers: (1) a system BX lifetime that X% of a product population fails, created on the parametric ALT scheme, (2) fatigue and redesign, (3) adapted ALTs with design alternations, and (4) an evaluation of whether the system design(s) acquires the objective BX lifetime. A life-stress model and a sample size formulation, therefore, are suggested. A refrigerator compressor is used to demonstrate this method. Compressors subjected to repetitive impact loading were failing in the field. To analyze the pressure loading of the compressor and carry out parametric ALT, a mass/energy balance on the vapor-compression cycle was examined. At the first ALT, the compressor failed due to a cracked or fractured suction reed valve made of Sandvik 20C carbon steel (1 wt% C, 0.25 wt% Si, 0.45 wt% Mn). The failure modes of the suction reed valves were similar to those valves returned from the field. The fatigue failure of the suction reed valves came from an overlap between the suction reed valve and the valve plate in combination with the repeated pressure loading. The problematic design was modified by the trespan dimensions, tumbling process, a ball peening, and brushing process for the valve plate. At the second ALT, the compressor locked due to the intrusion between the crankshaft and thrust washer. The corrective action plan specified to perform the heat treatment to the exterior of the crankshaft made of cast iron (0.45 wt% C, 0.25 wt% Si, 0.8 wt% Mn, 0.03 wt% P). After these design modifications, there were no troubles during the third ALT. The lifetime of the compressor was secured to have a B1 life of 10 years.


2022 ◽  
pp. 241-266
Author(s):  
Seongwoo Woo ◽  
Dennis L. O'Neal ◽  
Yimer Mohammed Hassen

This chapter explains the parametric accelerated life testing (ALT) to recognize design defects in mechanical products. A life-stress model and a sample size formulation are suggested. A compressor is used to demonstrate this method. Compressors were failing in the field. At the first ALT, the compressor failed due to a fractured suction reed valve. The failure modes were similar to those valves returned from the field. The fatigue of the suction reed valves came from an overlap between the suction reed valve and the valve plate. The problematic design was modified by the trespan dimensions, tumbling process, a ball peening, and brushing process for the valve plate. At the second ALT, the compressor locked due to the intrusion between the crankshaft and thrust washer. The corrective action plan performed the heat treatment to the exterior of the crankshaft made of cast iron. After the design modifications, there were no troubles during the third ALT. The lifetime of compressor was secured to have a B1 life 10 years.


2021 ◽  
Vol 349 ◽  
pp. 03009
Author(s):  
Seong-woo Woo ◽  
Dennis L. O’Neal ◽  
Yimer Mohammed Hassen

To enhance the design of mechanical systems, parametric Accelerated Life Testing (ALT) as a systematic reliability method is proposed as a way to evaluate the design of mechanical systems subjected to repeated impact stresses. It requires: (1) a parametric ALT scheme shaped on system BX lifetime, (2) a load inspection, (3) parametric ALTs with the associated design modifications, and (4) an assessment of whether the revised product design(s) reach the targeted BX life-time. We propose using a general life-stress model and sample size equation. A test example using both market data and parametric ALT was the redesign of a hinge kit system (HKS) in a refrigerator. To conduct parametric ALTs, a force and moment balance analysis was utilized. The mechanical impact loadings of the HKS were evaluated for an working refrigerator door. For the first ALT, the HKS failure happened in the crack/fracture of the kit housing and oil spilled from the damper when the HKS was disassembled. The failure modes and mechanisms constructed in the 1st ALT were similar to those of the unsuccessful samples found from the marketplace. The missing design parameters of the HKS included stress raisers such as corner roundings and the rib of the housing in HKS, the seal in the oil damper, and the material of the cover housing. In the second ALT, the cover housing fractured. The design defect of the cover housing in the HKS was the plastic material. As a corrective action plan, the cover housing was modified from plastic to aluminium. After the second ALT, the lifetime of the modified HKS was reassured to be B1 life 10 years with a yearly failure rate of 0.1%.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 139
Author(s):  
Seongwoo Woo ◽  
Dennis L. O’Neal ◽  
Dereje Engida Woldemichael ◽  
Samson Mekbib Atnaw ◽  
Muluneh Mekonnen Tulu

This paper develops parametric accelerated life testing (ALT) as a systematic reliability method to produce the reliability quantitative (RQ) specifications—mission cycle—for recognizing missing design defects in mechanical products as applying the accelerated load, expressed as the inverse of stress ratio, R. Parametric ALT is a way to enhance the prediction of fatigue failure for mechanical systems subjected to repeated impact loading. It incorporates: (1) A parametric ALT plan formed on the system BX lifetime, (2) a fatigue failure and design, (3) customized ALTs with design alternatives, and (4) an assessment of whether the last design(s) of the system fulfills the objective BX lifetime. A BX life concept with a generalized life-stress model and a sample size equation are suggested. A domestic refrigerator hinge kit system (HKS), which was a newly designed mechanical product, was used to illustrate the methodology. The HKS was subjected to repeated impact loading resulting in failure of the HKS in the field. To conduct ALTs, a force and momentum balance was utilized on the HKS. A straightforward impact loading of the HKS in closing the refrigerator door was examined. At the first ALT, the housing of the HKS failed. As an action plan, the hinge kit housing was modified by attaching inside supporting ribs to the HKS to provide sufficient mechanical strength against its loading. At the second ALT, the torsional shaft in the HKS made with austenitic ductile iron (18 wt% Ni) failed. The cracked torsional shaft for the 2nd ALTs came from its insufficient rounding, which failed due to repeated stress. As an action plan, to have sufficient material strength for the repetitive impact loads, the torsional shaft was reshaped to give it more rounding from R0.5 mm to R2.0 mm. After these modifications, there were no problems at the third ALT. The lifetime of the HKS in the domestic refrigerator was assured to be B1 life 10 years.


2010 ◽  
Vol 42 ◽  
pp. 339-342
Author(s):  
Shu Yi Guo ◽  
Yong Qi Qi

The reliability tests play more and more important role in mechanical systems. A new method named a few samples and combined the probability and the fuzzy mathematics has been set up to explore the unknown system of a few samples with the help of the life samples of the known probabilistic distribution. The method reduced the traditional reliability test samples by some auxiliary information. It converted lots of reliability test into a few samples. This paper introduced two engineering examples to verify the method as an effective way to carry out the reliability tests. It provides the theory basis for the reliability of complicated mechanical systems. The loss caused by fatigue failure is as high as 3%~4% of Gross National Product. Fatigue fracture owned to the cycle load accounts for 95% of the total number of mechanical structure failure. Unfortunately no evidence of failure is observed when fatigue failure reaches its life. This causes human casualties and great economic loss. So the reliability research on complicated mechanical systems has to realize from reliability assessment to the active reliability design. One of the key problems of the active reliability design for complicated mechanical system is to reduce the great waste of the resources used in the probability reliability test. For example, dozens of the high precision gears made of certain material may be run out in the fatigue test which would be running day and night for several months. It has been described many methods about system reliability design in the former research [1-3]. But for many high technological products and important mechanical devices, it is impossible to get the test sample to carry out probability analysis. To exert the advantages of the active reliability design and to realize the green reliability design [4], the only way is to study small samples in the reliability tests and to develop new technique. It is named as a few samples reliability tests method of the complicated mechanical systems.


2010 ◽  
Vol 118-120 ◽  
pp. 541-545
Author(s):  
Qin Ming Liu ◽  
Ming Dong

This paper explores the grey model based PSO (particle swarm optimization) algorithm for anti-cauterization reliability design of underground pipelines. First, depending on underground pipelines’ corrosion status, failure modes such as leakage and breakage are studied. Then, a grey GM(1,1) model based PSO algorithm is employed to the reliability design of the pipelines. One important advantage of the proposed algorithm is that only fewer data is used for reliability design. Finally, applications are used to illustrate the effectiveness and efficiency of the proposed approach.


Author(s):  
Gregory Mocko ◽  
Robert Paasch

The increase in complexity of modern mechanical systems can often lead to systems that are difficult to diagnose, and therefore require a great deal of time and money to return to a normal operating condition. Analyzing mechanical systems during the product development stages can lead to systems optimized in the area of diagnosability, and therefore to a reduction of life cycle costs for both consumers and manufacturers and an increase in the useable life of the system. A methodology for diagnostic evaluation of mechanical systems incorporating indication uncertainty is presented. First, Bayes formula is used in conjunction with information extracted from the Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA), component reliability, and prior system knowledge to construct the Component-Indication Joint Probability Matrix (CIJPM). The CIJPM, which consists of joint probabilities of all mutually exclusive diagnostic events, provides a diagnostic model of the system. The Replacement Matrix is constructed by applying a predetermined replacement criterion to the CIJPM. Diagnosability metrics are extracted from a Replacement Probability Matrix, computed by multiplying the transpose of the Replacement Matrix by the CIJPM. These metrics are useful for comparing alternative designs and addressing diagnostic problems of the system, to the component and indication level. Additionally, the metrics can be used to predict cost associated with fault isolation over the life cycle of the system.


Volume 3 ◽  
2004 ◽  
Author(s):  
L. Han ◽  
K. Young ◽  
R. Hewitt ◽  
A. Chrysanthou ◽  
J. M. O’Sullivan

Self-piercing riveting, as an alternative joining method to spot-welding, has attracted considerable interest from the automotive industry and has been widely used in aluminium intensive vehicles. One of the important factors that need to be considered is the effect of cyclic loading in service, leading to possible fatigue failure. The previous work reported in the public domain on the behaviour of self-piercing rivets has mainly focused on static tests. The work which is reported in this paper is concerned with the fatigue behaviour of single-rivet joints, joining two 2mm 5754 aluminium alloy sheets. The investigation also examined the effect of interfacial conditions on the fatigue behaviour. A number of fatigue failure mechanisms were observed based on rivet fracture, sheet fracture and combinations of these. The investigation has shown that they were dependent on the applied load and the sheet surface condition. Three-parameter Weibull analysis, using Reliasoft Weibull ++5.0 software, was conducted to analyse the experimental results. The analysis enabled the prediction of early-type failure (infant mortality failure) and wear-out failure patterns depending on the condition of the self-piercing riveted joints and the alloy sheet surface.


2012 ◽  
Vol 600 ◽  
pp. 250-255
Author(s):  
Qiang Cai ◽  
Ji Ming Kong ◽  
Ze Fu Chen

Under cyclic loading of concrete structures, fatigue failure is the main failure modes of fatigue, which has become the fatigue design of concrete structure must be considered, then the concrete fatigue studies must clarify the fatigue life of concrete under different survival curve S-N curve. Based on the statistics of the two parameter Weibull distribution theory, obtain the concrete under different survival rates of fatigue life distribution, namely to improve survival, reduce the fatigue life; stress level is reduced, the fatigue life is increased; and has set up more than 50% under different survival rates of concrete fatigue equation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shu Guo ◽  
Xiaoqi Chen ◽  
Yimeng Liu ◽  
Rui Kang ◽  
Tao Liu ◽  
...  

The brain network is one specific type of critical infrastructure networks, which supports the cognitive function of biological systems. With the importance of network reliability in system design, evaluation, operation, and maintenance, we use the percolation methods of network reliability on brain networks and study the network resistance to disturbances and relevant failure modes. In this paper, we compare the brain networks of different species, including cat, fly, human, mouse, and macaque. The differences in structural features reflect the requirements for varying levels of functional specialization and integration, which determine the reliability of brain networks. In the percolation process, we apply different forms of disturbances to the brain networks based on metrics that characterize the network structure. Our findings suggest that the brain networks are mostly reliable against random or k-core-based percolation with their structure design, yet becomes vulnerable under betweenness or degree-based percolation. Our results might be useful to identify and distinguish brain connectivity failures that have been shown to be related to brain disorders, as well as the reliability design of other technological networks.


Sign in / Sign up

Export Citation Format

Share Document