Study on gravel soil strength degradation and its influence on the slope stability in reservoir bank fluctuating zone

Author(s):  
Wenda Wang ◽  
Pengcheng Wang ◽  
Zhenhua Zhang
2015 ◽  
Vol 754-755 ◽  
pp. 463-467
Author(s):  
Zuhayr Md Ghazaly ◽  
Mustaqqim Abdul Rahim ◽  
Nur Fitriah Isa ◽  
Liyana Ahmad Sofri ◽  
Muhammad Azizi Azizan ◽  
...  

Slope stability is very important on designing a safe slope. If this were to be taken lightly by the engineer, major disaster will occur that results in lost of lives. Each engineer is responsible to evaluate all aspects of design, especially when designing a slope gradient on the surface of soft clay. Soft clay containing high water content and if not planned properly, water from the soft clay will seep into the slope and causes reduction in soil strength. The purpose of this research was to investigate the effect of water absorption of soft clay on the stability of the slope. The objectives of this study were to analyze the soil strength when the soil were soaked in water to a set of different time range and to analyze slope stability on soft clay based on the infiltration of water from underground using PLAXIS software. In this study, soil samples were taken and laboratory experiments were carried out to obtain the unit weight, cohesion, and friction angle of the soil samples. The experiments involved were grain size analysis test and unconfined compression test. Data from the experiments will be used in PLAXIS software to obtain the factor of safety.


2015 ◽  
Vol 9 (1) ◽  
pp. 196-206 ◽  
Author(s):  
Khaled Farah ◽  
Mounir Ltifi ◽  
Hedi Hassis

In this paper, the applicability and the effectiveness of the probabilistic finite element methods (FEMs) such as the perturbation method, and the Spectral Stochastic Finite Element Method (SSFEM) applied to the reliability analysis of the slope stability have been studied. The results were checked by the Monte Carlo simulation and a direct coupling ap-proach combining the deterministic finite elements code and First Order Reliability Method (FORM) algorithm. These methods are presented considering the spatial variation of soil strength parameters and Young modulus. The random field is used to describe the spatial variation. Also, the reliability analysis is conducted using a performance function formulat-ed in terms of the stochastic stress mobilized along the sliding surface. The present study shows that the perturbation method and SSFEM can be considered as practical methods to conduct a second moment analysis of the slope stability taking into account the spatial variability of soil properties since good results are obtained with acceptable estimated rela-tive errors. Finally, the perturbation method is performed to delimit the location of the critical probabilistic sliding surfac-es and to evaluate the effect of the correlation length of soil strength parameters on the safety factor. In addition, the two methods are used to estimate the probability density and the cumulative distribution function of the factor of safety.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qingxiang Meng ◽  
Kun Qian ◽  
Lin Zhong ◽  
Jinjian Gu ◽  
Yue Li ◽  
...  

Large-scale slopes at the banks of reservoirs pose a serious threat to the safety of hydropower stations. The fluctuation of the reservoir water level is a key factor in the slope stability. However, the parameters to describe the relationship among water content, matric suction, and soil strength are difficult to measure using unsaturated soil strength theory. To solve this problem, a simple FEM-LEM-combined scheme considering pore pressure, seepage force, and strength weakening is presented to calculate the safety factor. A numerical study on the impact of reservoir water level fluctuations on stability of a glaciofluvial deposit slope is implemented. Two typical profiles are used to estimate the stability of the glaciofluvial deposit slope in response to rising and lowering water levels. The results indicate that this method proposed a simple and efficient tool for water level-induced slope stability analysis.


Sign in / Sign up

Export Citation Format

Share Document