Peer review report 3 on “T-stress effects in mixed mode I/II/III brittle fracture”

2015 ◽  
Vol 133 ◽  
pp. 149
2015 ◽  
Vol 144 ◽  
pp. 32-45 ◽  
Author(s):  
Majid R. Ayatollahi ◽  
Behnam Saboori

2010 ◽  
Vol 31 (9) ◽  
pp. 4461-4469 ◽  
Author(s):  
A.R. Gowhari Anaraki ◽  
M. Fakoor

2020 ◽  
pp. 337-352 ◽  
Author(s):  
Mustafa Moussaoui ◽  
Salah Amroune ◽  
Antar Tahiri ◽  
Brahim Khalil Hachi

1986 ◽  
Vol 1 (1) ◽  
pp. 73-80 ◽  
Author(s):  
I.-H. Lin ◽  
R. M. Thomson

Ductile materials are found to sustain brittle fracture when the crack moves at high speed. This fact poses a paradox under current theories of dislocation emission, because even at high velocities, these theories predict ductile behavior. A theoretical treatment of time-dependent emission and cleavage is given which predicts a critical velocity above which cleavage can occur without emission. Estimates suggest that this velocity is in the neighborhood of the sound velocity. The paper also discusses the cleavage condition under mixed mode loading, and concludes that the cleavage condition involves solely the mode I loading, with possible sonic emission under such loadings


2016 ◽  
Vol 18 ◽  
pp. 52-57
Author(s):  
Lahouari Fodil ◽  
Abdallah El Azzizi ◽  
Mohammed Hadj Meliani

A failure criterion is proposed for ductile fracture in U-notched components under mixed mode static loading. The Compact Tension Shear (CTS) is the preferred test specimen used to determine stress intensity factor in the mode I, mode II and the mixed-mode fracture. In this work, the mode I and mode II stress intensity factors were computed for different notch ratio lengths 0.1<a/W<0.7, of the inner radius of notch 0.25mm<ρ<4mm and load orientation angles 0°<α< 90° using finite element analysis. However, a review of numerical analysis results reveals that the conventional fracture criteria with only stress intensity factors (NSIFs) Kρ first term of Williams’s solution provide different description of stress field around notch zone comparing with results introduce the second and third parameter T-stress and A3.


2017 ◽  
Vol 53 (1) ◽  
pp. 15-25 ◽  
Author(s):  
A.R. Torabi ◽  
Behnam Saboori

Brittle fracture of components made of the general-purpose polystyrene and weakened by an edge U-notch under combined tension/out-of-plane shear loading conditions (mixed mode I/III) has not been studied yet experimentally or theoretically. In this research, a recently developed loading fixture is employed for experimentally investigating the fracture of U-notched general-purpose polystyrene samples with various notch tip radii of 0.5, 1, 2 and 4 mm when they are subjected to different combinations of tension/out-of-plane shear. The samples are fabricated with four different notch tip radii with the purpose of assessing the influence of this geometrical parameter. The experimental values of fracture load and out-of-plane fracture angle are theoretically predicted by the two stress-based criteria of point stress and mean stress lately extended to general loading case of mixed mode I/II/III. It is shown that both the point stress and mean stress criteria provide acceptable predictions to fracture behavior of U-notched general-purpose polystyrene specimens. The critical distances needed for the point stress and mean stress criteria are determined based on the experimental results of the U-notched samples tested under pure mode I loading. No meaningful difference is found between the fracture loads and fracture initiation angles predicted by the point stress and mean stress criteria. It is also observed that as the mode III contribution in the applied mixed mode I/III loading increases, a larger total external load is needed for the fracture of U-notched general-purpose polystyrene specimens to occur.


Sign in / Sign up

Export Citation Format

Share Document