The effect of crack wake roughness on the environmentally assisted fatigue behavior of an aerospace Al-alloy in low moisture environments

2018 ◽  
Vol 199 ◽  
pp. 343-357
Author(s):  
J.L. Jones ◽  
M.D. McMurtrey ◽  
L.B. Brown ◽  
J.T. Burns
Keyword(s):  
Al Alloy ◽  
2008 ◽  
Vol 22 (31n32) ◽  
pp. 5477-5482 ◽  
Author(s):  
ATSUMICHI KUSHIBE ◽  
TSUTOMU TANAKA ◽  
YORINOBU TAKIGAWA ◽  
KENJI HIGASHI

The crack propagation properties for ultrafine-grained Zn -22 wt % Al alloy during low cycle fatigue (LCF) in the superplastic region and the non-superplastic region were investigated and compared with the corresponding results for several other materials. With the Zn - 22 wt % Al alloy, it was possible to conduct LCF tests even at high strain amplitudes of more than ±5%, and the alloy appeared to exhibit a longer LCF lifetime than the other materials examined. The fatigue life is higher in the superplastic region than in the non-superplastic region. The rate of fatigue crack propagation in the superplastic region is lower than that in the other materials in the high J-integral range. In addition, the formation of cavities and crack branching were observed around a crack tip in the supereplastic region. We therefore conclude that the formation of cavities and secondary cracks as a result of the relaxation of stress concentration around the crack tip results in a reduction in the rate of fatigue crack propagation and results in a longer fatigue lifetime.


2020 ◽  
Vol 1002 ◽  
pp. 21-32
Author(s):  
Ahmed R. Alhamaoy ◽  
Ghanim Sh. Sadiq ◽  
Furat I. Hussein ◽  
S.N. Ali

The optimal combination of aluminum quality, sufficient strength, high stress to weight ratio and clean finish make it a good choice in driveshafts fabrication. This study has been devoted to experimentally investigate the effect of applying laser shock peening (LSP) on the fatigue performance for 6061-T6 aluminum alloy rotary shafts. Q-switched pulsed Nd:YAG laser was used with operating parameters of 500 mJ and 600 mJ pulse energies, 12 ns pulse duration and 10 Hz pulse repetition rate. The LSP is applied at the waist of the prepared samples for the cyclic fatigue test. The results show that applying 500 mJ pulse energy yields a noticeable effect on enhancing the fatigue strength by increasing the required number of cycles to fracture the sample. In addition, the effect on increasing the pulse energy from 500 mJ to 600 mJ shows a significant effect in term of creating the endurance limit for the samples.


1994 ◽  
Vol 364 ◽  
Author(s):  
Gang Li ◽  
Jian-Ting Guo ◽  
Zhong-Guang Wang

AbstractIn this investigation, the influence of second phase particles on high cycle fatigue behavior of Ni3Al alloy is studied. A single phase Ni3Al-B alloy and a Ni3Al-B/Zr alloy with a few second phase particles (Ni5Zr) at the grain boundaries are selected for investigation. High cycle fatigue tests at room temperature with R (minimum stress/maximum stress) 0.1 are conducted in air and at 30 Hz. The results show that the second phase particles are detrimental to high cycle fatigue resistance. It may be explained in terms of the second phase particles promoting fatigue crack initiation. The characteristics of fracture surfaces are examined by Scanning Electron Microscopy (SEM).


2012 ◽  
Vol 538-541 ◽  
pp. 1693-1696 ◽  
Author(s):  
Y. Uematsu ◽  
T. Kakiuchi ◽  
Y. Kobayashi ◽  
Y. Harada

Rotating bending fatigue tests had been performed using A5052 aluminum (Al) alloy with the hybrid coatings which consisted of tungsten carbide including 12% cobalt (WC-12Co) interlayer and diamond-like carbon (DLC) film, in order to investigate the effect of hybrid coating on the fatigue behavior. The WC-12Co layer was thermally sprayed by a high velocity oxygen fuel (HVOF) method on A5052 with the thickness of 70, 120 or 170μm. Subsequently, the DLC film was deposited with the thickness of 15μm. The fatigue strengths of the specimens with WC-12Co single layer were higher than those of the substrate and increased with increasing the thickness of WC-12Co layer. The fatigue strengths of the specimens with the hybrid coating of 70μm WC-12Co interlayer and 15μm DLC film were better than those of the specimen with 70μm WC-12Co single layer. Thus the hybrid coating structure was effective to improve fatigue strengths. However the beneficial effect of hybrid coating was not apparent in the specimens with thicker WC-12Co interlayer of 120 and 170μm.


2007 ◽  
Vol 22 (2) ◽  
pp. 544-550 ◽  
Author(s):  
D.C. Qiao ◽  
G.Y. Wang ◽  
P.K. Liaw ◽  
V. Ponnambalam ◽  
S.J. Poon ◽  
...  

Four-point-bend fatigue experiments were conducted on the Fe48Cr15Mo14Er2C15B6 bulk metallic glass (BMG), amorphous steel, under load control, employing an electrohydraulic machine, at a frequency of 10 Hz (using a sinusoidal waveform) with an R ratio of 0.1, where R = σmin./σmax. (σmin. and σmax. are the applied minimum and maximum stresses, respectively). The test environment was laboratory air. Fe48Cr15Mo14Er2C15B6 exhibited a high fatigue-endurance limit (682 MPa), which is found to be greater than those of the Zr-based BMG, Al-alloy, and high-nitrogen steel. However, the stress versus number of fatigue cycles curve of Fe48Cr15Mo14Er2C15B6 has a significantly brittle fracture mode. Some fatigue cracks initiated from the inclusions or porosities, and the fatigue-crack propagation region was large. However, other cracks initiated from the outer tensile surface of the specimen, and the fatigue-crack propagation region was very small. The mechanisms of fatigue-crack initiation are suggested.


Sign in / Sign up

Export Citation Format

Share Document